

Design decision on MQXF protection

E. Todesco, P. Ferracin, E. Ravaioli, M. Mentink, D. Wollmann, F. Rodriguez Mateos (CERN), G. Ambrosio (FNAL)

G. Kirby (CERN) https://edms.cern.ch/document/1972818

30 September 2018 - Geneve

MQXF PROTECTION

- Since the beginning of the project, MQXF protection considered OL heaters, and CLIQ or IL heaters, with the idea of selecting one of them
 - Outer layer quench heaters well established, giving a hotspot temperature at the limit of our specification of 350 K
 - Note that 11 T has 10 K more hotspot but goes with OL only but for MQXF we want more margin
 - To give more margin (100 K) we implemented in the short model program
 - Inner layer quench heaters (issues with delamination)
 - CLIQ (novel system, contrary to heaters its physics is not independent of the magnet length)

RESULTS OF MQXFP1

- CLIQ was already tested on long magnets (LHC dipole)
 - We planned to decide between IL heaters/CLIQ after a test on MQXF prototype
 - First test on 4-m-long prototype (MQXFAP1) took place in BNL in August 2017
 - Nominal configuration of CLIQ (500 V, 40 mF)
 - Quench 14 with outer layer heater, inner layer heaters, CLIQ, and dump resistor
 - Quench 15, 16, 17 with outer layer heater, CLIQ, and dump resistor
- Measured 25.2 MIITs instead of 27.1 MIITs foreseen (reality a bit better than simulation)
 2018-02-15-1501 Sim #2185

Simulation versus measured quench protected with dump, IL heaters, OL heaters, and CLIQ in MQXFAP1, quench 14 [E. Ravaioli, J. Muratore, et al.] E. Todesco

RESULTS OF MQXFP1

- Initial plan to have a test in nominal configuration (no dump resistor) jeopardized by magnet short that interrupted the test
 - No evidence of any relation of the short to CLIQ mechanism is a double short to outer layer heaters

Simulation versus measured quench protected with dump, OL heaters, and CLIQ in MQXFAP1, quench 15 [E. Ravaioli, J. Muratore et al.]

RESULTS OF MQXFS4

- MQXSF4 was the first magnet to have a full training in nominal configuration
 - No dump, outer layer heaters and CLIQ
 - 8 quenches done, no issues (and good performance)

Training of MQXFS4

INNER LAYER HEATERS

- Inner layer heaters shown significant issues of delamination: we found so far
 - Delamination present also without inner layer heaters powering
 - Delamination between stations and inner part of the aperture
 - Voltage breakdown below the specified valie of 3 kV on a relevant fraction of the coils (50%)
 - No short coil to ground induced by this issue in the whole short model program

Decision to remove the inner layer heaters

6

SUMMARY

- New data give us further confidence on selecting CLIQ as a baseline (with IL heaters)
 - Four quenches on the 4.0-m-long prototype using CLIQ
 - Full training on a short model with nominal configuration
- Inner layer heater delamination
 - Considerable progress in the phenomenology of the problem
 - No solution ready, as a risk reduction we remove them from the baseline
 - From coil 107 in MQXFA (first coil of MQXFA03)
 - From coil 104 of MQXFB (First coil of MQXFBP1)

