WHEPP, IIT Guwahati 4th December 2019

Prospects of Higgs pair production at the HL-LHC

Rahool Kumar Barman IISc Bangalore

Based on: JHEP 1807 (2018) 116 and JHEP 1909 (2019) 068 A Adhikary(IISc), S Banerjee(IPPP Durham), RKB, B Bhattacherjee(IISc), S Niyogi(GMCC Kolkata)

< □ > < 同 > < 回 > < Ξ > < Ξ

- HL-LHC prospects of non-resonant di-Higgs searches.
- A qualitative analysis of the sensitivity of di-Higgs search strategies on λ_{hhh} .
- Contamination to di-Higgs final states from BSM scenarios.

• • • • • • • • • • • •

- $\bullet\,$ The CMS and ATLAS collaborations have unambiguously confirmed the existence of a scalar boson at 125 $\,{\rm GeV}.$
- Numerous studies performed to measure the Higgs coupling with SM particles.
- The Higgs self-coupling, λ_{hhh} still remains elusive.
- The only direct probe of λ_{hhh} in SM is offered by the non-resonant Higgs pair production process, where the final state Higgs eventually decays into SM particles.
- Precise measurement of λ_{hhh} is extremely challenging because of the small SM di-Higgs production cross-section.
- In the SM, the di-Higgs production proceeds through top-quark loop in the *ggF* mode.

(日)

Direct measurement is challenging :

Small SM production cross-section : $\sigma_{gghh_{SM}} = 39.56^{+7.32\%}_{-8.38\%}$ (at 14 TeV).^a Other di-Higgs production modes furnish even smaller cross-sections ~ 1 fb

^aBorowka et. al., 2016

However, phenomenologically rich final states can emerge, offering a possibility to improve the discovery potential through highly optimized search strategies.

Current limits from non-resonant di-Higgs searches:

- ATLAS : 13.3 ${
 m fb}^{-1}$: 4b : \sim 29 times.
- ATLAS : 36.1 ${
 m fb}^{-1}$: 4b : \sim 13 times

• CMS : 35.9 ${\rm fb}^{-1}$: $2b2\tau$: ~ 30 times.

• CMS : 35.9 fb⁻¹ : $2b2\gamma$: ~ 19 times.

Strategy

• Optimize the di-Higgs search strategy using both, cut-based analysis and multivariate techniques, for a multitude of di-Higgs final states:

1. $b\bar{b}\gamma\gamma$	5. $b\bar{b}W^+W^- ightarrow b\bar{b}l u jj$	0 111/ 01
2. $b\bar{b}\tau_h\tau_h$	6. $b\bar{b}W^+W^- \rightarrow b\bar{b}l\nu l\nu$	9. $4VV \rightarrow ss2l$
3. $b\bar{b}\tau_h\tau_l$	7. $W^+W^-\gamma\gamma \rightarrow I\nu jj\gamma\gamma$	10. $4W \rightarrow 3I$
4. $b\bar{b}\tau_{l}\tau_{l}$	8. $W^+W^-\gamma\gamma \rightarrow I\nu I\nu\gamma\gamma$	11. $4VV \rightarrow 4I$

・ロト ・日 ・ ・ ヨト ・

The small signal rate is compensated by a very clean signature.

Backgrounds

• Dominant background : **QCD-QED** $b\bar{b}\gamma\gamma$.

Pure QED contribution is roughly \sim O(1%) of the QCD-QED counterpart.

- Associated production of Higgs with bottom and top quarks : $b\bar{b}h$, $t\bar{t}h$.
- Associated production of Higgs with Z-boson : Zh.
- Fake backgrounds : c̄cγγ, jjγγ, b̄bjj, b̄bjγ, c̄cjγ.

$$\begin{split} N^{c\bar{c}\gamma\gamma}\left(jj\gamma\gamma\right) &= (N^{c\bar{c}\gamma\gamma}\left(jj\gamma\gamma\right) / N^{b\bar{b}\gamma\gamma}_{\mathrm{ATLAS}}) \cdot N^{b\bar{b}\gamma\gamma} \\ N^{c\bar{c}j\gamma} &= (N^{c\bar{c}j\gamma}_{\mathrm{ATLAS}} / N^{b\bar{b}j\gamma}_{\mathrm{ATLAS}}) \cdot N^{b\bar{b}j\gamma}. \end{split}$$

Event selection

- Exactly 2 b-tagged jets and exactly 2 $\gamma.$
- $p_T^{b_1} > 40 \text{ GeV}$ and $p_T^{b_2} > 30 \text{ GeV}$.
- $|\eta_{b_1,b_2}| < 2.4.$
- $p_T^\gamma > 30~{
 m GeV}$ and $|\eta_\gamma| < 1.37$, $1.52 < |\eta_\gamma| < 2.37.$
- Veto : Isolated leptons with $p_T > 25~{
 m GeV}$ and $|\eta| < 2.5.$

Selection cuts

• *N*_j < 6

0.4 < ΔR_{γγ} < 2.0, 0.4 < ΔR_{bb} < 2.0, ΔR_{γb} > 0.4
p_{T,bb} > 80 GeV, p_{T,γγ} > 80 GeV
100 GeV < m_{bb} < 150 GeV, 122 GeV < m_{γγ} < 128 GeV

Significantly reduces the $t\bar{t}h$ background, when either or both top quarks decay hadronically.

• • • • • • • • • • • •

The $b\bar{b}\gamma\gamma$ channel

Selection cuts

N_j < 6 0.4 < ΔR_{γγ} < 2.0, 0.4 < ΔR_{bb} < 2.0, ΔR_{γb} > 0.4 p_{T,bb} > 80 GeV, p_{T,γγ} > 80 GeV 100 GeV < m_{bb} < 150 GeV, 122 GeV < m_{γγ} < 128 GeV

Highly effective in tackling the QED-QCD $b\bar{b}\gamma\gamma$ and fake backgrounds.

The $b\bar{b}\gamma\gamma$ channel

Selection cuts

N_j < 6
0.4 < ΔR_{γγ} < 2.0, 0.4 < ΔR_{bb} < 2.0, ΔR_{γb} > 0.4 **p**_{T,bb} > 80 GeV, **p**_{T,γγ} > 80 GeV
100 GeV < m_{bb} < 150 GeV, 122 GeV < m_{γγ} < 128 GeV

Effective in reducing the QED-QCD $b\bar{b}\gamma\gamma$, fake backgrounds and $t\bar{t}h$ backgrounds.

The $b\bar{b}\gamma\gamma$ channel

Selection cuts

N_j < 6
0.4 < ΔR_{γγ} < 2.0, 0.4 < ΔR_{bb} < 2.0, ΔR_{γb} > 0.4
p_{T,bb} > 80 GeV, p_{T,γγ} > 80 GeV
100 GeV < m_{bb} < 150 GeV, 122 GeV < m_{γγ} < 128 GeV

Eliminates a significant chunk of Zh and $b\bar{b}h$ background.

The cut flow table

	Event rates with 3000 fb ⁻¹ of integrated luminosity							
Cut flow	Signal		SM Backgrounds			$\frac{S}{\sqrt{B}}$		
	$hh ightarrow 2b2\gamma$	hbb	tīth	Zh	$b\bar{b}\gamma\gamma*$	Fake 1	Fake 2	· -
$2b + 2\gamma$	31.63	21.20	324.91	39.32	25890.31	1141.18	393.79	0.19
lepton veto	31.63	21.20	255.66	39.32	25889.94	1141.18	393.79	0.19
$N_j < 6$	31.04	21	192.05	39.23	25352.78	1064.64	167.32	0.19
ΔR cuts	22.19	7.75	38.71	23.48	4715.21	130.10	28.81	0.31
m _{bb}	12.71	1.53	13.80	1.09	862.37	22.11	6.88	0.42
$m_{\gamma\gamma}$	12.36	1.5	13.16	1.06	26.54	22.11	6.88	1.46
$p_{T,bb}, p_{T,\gamma\gamma}$	12.32	1.48	13.03	1.06	26.54	21.82	6.88	1.46

Signal significance : $\frac{S}{B} = 0.17$ and $\frac{S}{\sqrt{B}} = 1.46$.

 ${}^{0}b\bar{b}\gamma\gamma*: b\bar{b}\gamma\gamma + c\bar{c}\gamma\gamma + jj\gamma\gamma$ 0 Fake 1: $b\bar{b}j\gamma + c\bar{c}j\gamma$, Fake 2: $b\bar{b}jj$.

イロト イヨト イヨト イヨ

- $\bullet\,$ The signal lacks any ${\not\!\!{\rm E}_{\rm T}}$ source.
- Leptonically decaying W-bosons in tt
 t t

Applying, $E_T < 50 \text{ GeV}$

	Process	Events
	hbb	1.31
Deelemanned	tīth	7.87
Баскугоина	Zh	1.03
	$b\bar{b}\gamma\gamma *$	23.18
	Fake 1	20.69
	Fake 2	6.52
	Total	60.60
Signal $(hh ightarrow 2b2\gamma)$		11.75
Significance (S/\sqrt{B})		1.51

• Jet energy corrections can result in a shift in the $m_{b\bar{b}}$ distributions.

Applying, m_{bb} : 90 GeV $< m_{bb} <$ 130 GeV

	Process	Events
	hb৳	1.55
Peelemaund	tīth	11.91
Баскугоина	Zh	4.43
	$bar{b}\gamma\gammast$	28.41
	Fake 1	22.39
	Fake 2	7.25
	Total	75.94
Signal (<i>hh</i> –	$\rightarrow 2b2\gamma)$	14.27
Significance	(S/\sqrt{B})	1.64

イロト イポト イヨト イ

A multivariate analysis is also performed by utilising the Boosted Decision Tree (BDT) algorithm.

Variables used

The most effective variables in isolating the signal and backgrounds: $m_{bb}, p_{T,\gamma\gamma}, \Delta R_{b_1\gamma_1}, \Delta R_{bb}$

Features a $\sim 20\%$ improvement in signal significance.

SI. No.	Process	Events
	hbĐ	2.75
Packground	tīth	14.85
Баскground	Zh	12.28
	$b\bar{b}\gamma\gamma *$	34.46
	Fake 1	14.25
	Fake 2	8.46
	Total	87.05
Signal $(hh ightarrow 2b2\gamma)$		16.46
Significance (S/\sqrt{B})		1.76

The τ leptons can decay either leptonically (34%) and hadronically. Three final states : $b\bar{b}\tau_{l}\tau_{l}$, $b\bar{b}\tau_{l}\tau_{h}$, $b\bar{b}\tau_{h}\tau_{h}$.

Background

• Dominant background : $t\bar{t}$

Contributions arise from hadronic, leptonic and semi-leptonic decay modes of $t\bar{t}$.

- $b\bar{b}Z^*/\gamma^* \rightarrow b\bar{b}\tau^+\tau^-$.
- bbh.
- *Zh*.
- Associated production of bosons with $t\bar{t}$ pair : $t\bar{t}h$, $t\bar{t}W$, $t\bar{t}Z$
- Fake backgrounds : *bbjj*.
- Other potential sources can be W(→ τν) + jets, Wh, WZ, h → ZZ*, however, are neglected because of small rates.

A D F A A F F A

The $b\bar{b}\tau^+\tau^-$ channel

- The signal is marred by an extremely large $t\bar{t}$ background.
- Cut-based analysis, motivated from a similar search by ATLAS, results in a signal significance of ~ 0.44, 0.26 and 0.044, for $b\bar{b}\tau_{h}\tau_{h}$, $b\bar{b}\tau_{l}\tau_{l}$, and $b\bar{b}\tau_{l}\tau_{l}$, respectively.
- Imposing an additional cut on $M_{\tau\tau} < 200 \text{ GeV}$ improves S/\sqrt{B} to 0.65, 0.44 and 0.07.
- Multivariate analysis performed using the variables :

 $\tau_{h}\tau_{h}: p_{T,bb}, m_{bb}, \Delta R_{bb}, M_{\tau_{h}\tau_{h}}, m_{T2}, \Delta \phi_{\tau_{h_{1}} \not\!\!\!E_{\mathrm{T}}}, m_{bh}^{\mathrm{vis}}, p_{T,hh}^{\mathrm{vis}}, \Delta R_{hh}^{\mathrm{vis}}, \tau_{h}\tau_{l}: p_{T,bb}, m_{bb}, \Delta R_{bb}, M_{\tau_{h}\tau_{l}}, m_{T2}, \Delta \phi_{\tau_{h} \not\!\!\!E_{\mathrm{T}}}, \Delta \phi_{\tau_{\ell} \not\!\!\!E_{\mathrm{T}}}, m_{hh}^{\mathrm{vis}}, \Delta R_{hh}^{\mathrm{vis}}, \tau_{l}\tau_{l}: p_{T,bb}, m_{bb}, \Delta R_{bb}, M_{\tau_{l}\tau_{l}}, m_{T2}, \Delta \phi_{\tau_{\ell} \not\!\!\!E_{\mathrm{T}}}, \Delta \phi_{\tau_{\ell} \not\!\!\!E_{\mathrm{T}}}, m_{hh}^{\mathrm{vis}}, \Delta R_{hh}^{\mathrm{vis}}, \tau_{l}\tau_{l}: p_{T,bb}, m_{bb}, \Delta R_{bb}, M_{\tau_{l}\tau_{l}}, m_{T2}, \Delta \phi_{\tau_{\ell} \not\!\!\!E_{\mathrm{T}}}, \Delta \phi_{\tau_{\ell} \not\!\!\!E_{\mathrm{T}}}, m_{hh}^{\mathrm{vis}}$ results in a signal significance of 0.74, 0.49 and 0.077, respectively.

Three possible final states :

- Fully leptonic : $b\overline{b}ll + E_T$. Cleaner signature and lesser background.
- Semi leptonic : $b\bar{b}l + jets + E_T$.
- Hadronic : $b\bar{b} + jets..$

Backgrounds

Dominant background : tt

Fully leptonic $t\bar{t}$ contributes as dominant background to $b\bar{b}ll + E_{\rm T}$. Leptonic and semi-leptonic contributes as dominant background to $b\bar{b}l + jets + E_{\rm T}$.

- Second most dominant background for the semi-leptonic case : $Wb\bar{b} + jets$
- Other contributing backgrounds : $IIb\bar{b}$, $b\bar{b}h$, $t\bar{t}h$, $t\bar{t}V$, Vh, $Vb\bar{b}$ and VVV

• • • • • • • • • • •

The $b\bar{b}W^+W^-$ channel

The $2b2l + E_T$ channel : Multivariate analysis is performed using BDT algorithm.

Variables used :

- The BDT algorithm is trained by using the signal sample and the *t*t background only.
- Best discriminatory variables : m_{bb} , $m_{\ell\ell}$, $p_{T,bb}$ and $p_{T,\ell\ell}$

SI. No.	Process	Events
	tī lep	2080.52
Background	tŦh	131.66
Dackground	tŦZ	106.31
	tŦW	35.97
	hbb	~ 0
	lℓbb	842.72
	Total	
Signal ($hh \rightarrow$	35.20	
Signif	0.62	

• • • • • • • • • •

The $b\bar{b}W^+W^-$ channel

- Dominant background : Semi-leptonic and leptonic decays of $t\bar{t}$
- Input variables used :

 $\boldsymbol{\rho}_{T,\ell}, \ \boldsymbol{E}_{T}, \ \boldsymbol{m}_{jj}, \ \boldsymbol{m}_{bb}, \ \boldsymbol{\Delta} \boldsymbol{R}_{jj}, \ \boldsymbol{\Delta} \boldsymbol{R}_{bb}, \ \boldsymbol{p}_{T,bb}, \ \boldsymbol{p}_{T,\ell jj}, \ \boldsymbol{\Delta} \phi_{bb \ \ell jj}, \ \boldsymbol{\Delta} \boldsymbol{R}_{\ell \ jj},$

where $p_{T,\ell jj}$ refer to the p_T of the ℓjj system (Eg., for the signal, ensuing from the $h \rightarrow WW^* \rightarrow \ell \nu jj$ decay).

- Background training is performed using $t\overline{t}$.
- The best discriminatory observables : m_{bb} , p_{T,ℓ_1} , $p_{T,bb}$ and E_T .

SI. No.	Process	Events
	tī semi-lep	866990.56
Background	tī lep	96147.82
Dackground	tīth	4508.25
	tτΖ	5192.52
	tŦW	2949.65
	$Wb\bar{b} + jets$ [LO]	121313.52
	ℓℓbЪ	5780.47
	Total	1102882.79
Signal $(hh \rightarrow 2b2W)$		134.34
Significance (S/\sqrt{B})		0.13

Features smaller signal yield, however, has lesser background.

The pure leptonic decay :

Backgrounds : • $t\bar{t}h$, • Zh, • $II\gamma\gamma$.

• Variables for multivariate analysis :

• Best discriminating variables : $m_{\ell\ell}$, E_T , $p_{T,\gamma\gamma}$, $m_{\gamma\gamma}$

SI. No.	Process	Events
	tīth	0.89
Pooleground	Zh + jets	0.20
Dackground	$\ell\ell\gamma\gamma$ + jets	0.33
Total		1.42
Signal		0.57

• Features one of the best $\frac{S}{B}$ values ~ 0.40. Has the potential to become an important channel for HE-LHC owing to higher $\frac{S}{B}$.

The $W^+W^-\gamma\gamma$ channel

The semi-leptonic case :

Backgrounds

- Irreducible background : $l\nu\gamma\gamma$ ($\sigma = 3.28$ fb)
- Mis-identified background : $I \gamma \gamma$ ($\sigma = 1.05 \text{ fb}$)
 - Both, generated with 120 GeV $< m_{\gamma\gamma} < 130$ GeV
- Other important backgrounds: *tth*, *Zh*+jets, *Wh*

Most discriminating
variables :
$\Delta R_{\ell j}$, $p_{ au,\gamma\gamma}$, $m_{\gamma\gamma}$ and $m_{ au}$

$\begin{array}{c c} & t \overline{t} h & 6.49 \\ Zh + j ets & 1.71 \\ Wh + j ets & 5.13 \\ \ell \nu \gamma \gamma + j ets & 2.57 \\ \ell \ell \gamma \gamma + j ets & 1.07 \\ \hline Total & 16.97 \\ \hline \\ Signal & 1.85 \\ \end{array}$	SI. No.	Process	Events	
$\begin{array}{c c} Background & Zh + jets & 1.71 \\ Wh + jets & 5.13 \\ \ell \nu \gamma \gamma + jets & 2.57 \\ \ell \ell \gamma \gamma + jets & 1.07 \\ \hline & Total & 16.97 \\ \hline & Signal & 1.85 \end{array}$		tīth	6.49	
	Paalemaund	Zh + jets	1.71	
$ \begin{array}{c c} \ell \nu \gamma \gamma + \text{jets} & 2.57 \\ \ell \ell \gamma \gamma + \text{jets} & 1.07 \\ \hline \text{Total} & 16.97 \\ \hline \end{array} $	Баскугоции	Wh + jets	5.13	
$\begin{array}{c c} \ell \ell \gamma \gamma + \text{jets} & 1.07 \\\hline & \text{Total} & 16.97 \\\hline \\ \text{Signal} & 1.85 \\\hline \end{array}$		$\ell \nu \gamma \gamma + jets$	2.57	
Total 16.97 Signal 1.85		$\ell\ell\gamma\gamma$ + jets	1.07	
Signal 1.85		Total	16.97	
	Signal		1.85	

• • • • • • • • • • • •

The 4W channel

We choose these final states :

Backgrounds

- SS2I :
 - Dominant backgrounds : $WZ(W \rightarrow \ell\nu, Z \rightarrow \ell\ell)$ and same-sign W-pair.
 - Other important ones : Vh, $t\bar{t}X$ (X = W[±], Z, h), Fakes : $t\bar{t}$.
- 3I :
 - Dominant backgrounds : Wh, WZ, Fake backgrounds : $t\bar{t}$
 - Others : $Zh (Z \to \ell\ell, h \to W^+W^-)$, $t\bar{t}X (X = W^{\pm}, Z, h)$ and ZZ
- 41 :
 - Fake backgrounds : $t\bar{t}$ Other important backgrounds : Wh, $t\bar{t}h$, $t\bar{t}$, ZZ and Zh

Variables used for multivariate analysis :

- SS2I: $m_{\ell^{\pm}\ell^{\pm}}, \Delta R_{\ell_i j_k}, m_{jj}$.
- 31: $m_{\ell_i \ell_j}$, $\Delta R_{\ell_i \ell_j}$, $m_{\ell \ell \ell}$, m_{eff} , E_T , p_{T,ℓ_i} , n_{jet} .

The 4W channel

We choose these final states :

- Four leptons (4ℓ) : $4\ell + \not\!\!\!E_T$.

Backgrounds

- SS2I :
 - Dominant backgrounds : $WZ(W \rightarrow \ell\nu, Z \rightarrow \ell\ell)$ and same-sign W-pair.
 - Other important ones : Vh, $t\bar{t}X$ (X = W[±], Z, h), Fakes : $t\bar{t}$.
- 3I :
 - Dominant backgrounds : Wh, WZ, Fake backgrounds : $t\bar{t}$
 - Others : $Zh (Z \to \ell\ell, h \to W^+W^-)$, $t\bar{t}X (X = W^{\pm}, Z, h)$ and ZZ
- 41 :
 - Fake backgrounds : $t\bar{t}$ Other important backgrounds : Wh, $t\bar{t}h$, $t\bar{t}$, ZZ and Zh

SS21 :

		Events
Background	Total	12366.53
Signal		11.96
Significance (S/\sqrt{B})	0.11

31:

		Events
Background	Total	5374.45
Signal		15.01
Significance (S/\sqrt{B})	0.20

41:

		$ \mathbb{E}_{\mathrm{T}} $ cut
		$> 50 { m GeV}$
Background	5876.22	131.51
Signal	2.02	1.42

- Combination of results from the previous channels yield a combined signifiance of 2.1σ .
- Small di-Higgs production rate makes the prospect of discovering di-Higgs at the HL-LHC quite weak.
- The $b\bar{b}\gamma\gamma$ channel offers the highest signal significance.
- The $WW\gamma\gamma$ channel has the potential to play an important role in di-Higgs searches at higher luminosities or HE-LHC, owing to its excellent S/B value.

• The HL-LHC study by ATLAS^a predicts a sensitivity of $-0.8 < \lambda_{hhh}/\lambda_{SM} < 7.7$.

• Change in λ_{hhh} can alter the di-Higgs production rate as well as the kinematics.

^aATL-PHYS-PUB-2017-001

5 different values of $\lambda_{hhh}/\lambda_{SM}$ is considered : –1, 1, 2, 5, 7, and we do the following:

Signal production is done with the new λ_{hhh} values, and

- Case A : Passed through the cut-based analysis optimized for SM case ($\lambda_{hhh}/\lambda_{SM} = 1$).
- Case B : Passed through the BDT analysis optimized for SM case ($\lambda_{hhh}/\lambda_{SM} = 1$).
- Case C : The BDT framework is trained with an alternative $\lambda_{hhh}/\lambda_{SM}=5$
- Case D : Training is performed for each specific value of λ_{hhh} .

< □ > < 同 > < 回 > < Ξ > < Ξ

Case A : Passed through the cut-based analysis optimized for SM case $(\lambda_{hhh}/\lambda_{SM} = 1)$

	Cut Based (optimised for $\lambda_{hhh}/\lambda_{SM} = 1$)				
λ/λ_{SM}	Sigma xs (fb)	Efficiency	Signal yield	Background yield	S/\sqrt{B}
-1	0.40	0.027	32.40		3.85
1	0.105	0.039	12.28		1.46
2	0.05	0.046	6.90		0.82
5	0.26	0.008	6.24	70.81	0.74
7	0.70	0.010	21.00		2.49

Case B : Passed through the BDT analysis optimized for SM case ($\lambda_{hhh}/\lambda_{SM} = 1$).

BDT (optimised for $\lambda_{hhh}/\lambda_{SM} = 1$)					
λ/λ_{SM}	Signal xs (fb)	Efficiency	Signal yield	Background yield	S/\sqrt{B}
-1	0.40	0.035	41.76		4.48
1	0.105	0.052	16.46		1.76
2	0.05	0.063	9.42		1.01
5	0.26	0.010	7.84	87.05	0.84
7	0.70	0.011	23.10		2.48

・ロト ・回 ト ・ ヨト ・

Difference in kinematic distributions cropping from variation in λ_{hhh} :

Case D

Training the BDT with corresponding λ_{hhh} samples \rightarrow

• the training becomes more tuned to the modified kinematic distributions.

Marks an improvement in the signal significance.

	BDT (optimised for each λ_{hhh})				
λ/λ_{SM}	Signal xs (fb)	Efficiency	Signal yield	Background yield	S/\sqrt{B}
-1	0.40	0.049	58.80	166.13	4.55
1	0.105	0.052	16.46	87.05	1.76
2	0.05	0.068	10.20	85.54	1.10
5	0.26	0.046	35.88	455.51	1.69
7	0.70	0.049	102.90	466.97	4.76

• Changes accounting from variations in λ_{hhh} requires a careful analysis.

• Using the kinematic distributions to segregate the modifications emerging from changes in λ_{hhh} would be essential in searches for new physics.

< □ > < 同 > < 回 > < Ξ > < Ξ

- The SM signal is susceptible to contamination or distortion from small new physics effects.
- Statistically significant deviations may be considered as New Physics signatures.
- Deviations can also be solely attributed to modifications in λ_{hhh} .

The BDT was trained to maximize the SM di-Higgs yield \rightarrow Do the NP signatures mimic the SM signal and render the BDT optimisation insensitive?

Contaminations can arise if :

- the discriminatory kinematics variables used to train the BDT, have a significant overlap with the SM counterparts.
- large new physics cross-section, with a smaller kinematic overlap.
- We study some such imposters ensuing from various well-motivated new physics scenarios through benchmark studies.

< □ > < 同 > < 回 > < 回 >

A typical example would be extensions of SM, with an extended Higgs sector. Resonant heavy Higgs production followed by decay into SM-like Higgs pair can enhance the di-Higgs cross-section.

Three possible scenarios which can contaminate :

- Double Higgs production : $pp \rightarrow hh(+X)$
- Single Higgs production : $pp \rightarrow h + X$
- Null Higgs scenario : $pp \rightarrow X$

A D F A A F F A

We derive upper limits on $\sigma(pp \to H \to hh)$ as a function of M_H , in a model independent fashion, using the inequality $S_{NP}^{UL}/\sqrt{B_{SM}} \ge N\sigma$.

- B_{SM} includes the SM backgrounds as well as the SM di-Higgs contirbution.
- The BDT optimization derived for non-resonant SM di-Higgs has been used to quantify the amount of contamination.

- The grey region do not contaminate the SM expectation.
- $\bullet\,$ The blue and green region contaminate at $5\sigma\,$ and $2\sigma.$

< □ > < 同 >

The hh(+X) channel

Upper limits corresponding to all other non-resonant di-Higgs final states considered earlier, were obtained.

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Generic features :

- Strongest upper limits are obtained for $b\bar{b}\gamma\gamma$. Around ~ 25 fb at $M_H = 650$ GeV.
- $b\bar{b}\tau\tau$ offers the second strongest bound. Cross-section varies between 170 80 fb.
- $b\bar{b}WW^*$, varying between 228 fb and 40 fb for m_H varying between 450 GeV and 650 GeV.
- The 2σ upper limit plateaus between 129 fb and 282 fb for the fully leptonic case $WW\gamma\gamma$.
- Bounds from the 4W modes are much weaker.

Resonant production of pseudoscalar Higgs boson, followed by its decay into $A \rightarrow Zh$, can imitate a majority of di-Higgs final states.

Within MSSM, $A \rightarrow Zh$ can be appreciable below $t\bar{t}$ threshold.

We derive upper limits on $\sigma(pp \rightarrow A \rightarrow Zh)$ as a function of M_A .

- Weaker limits than those from resonant scalar production.
- $b\bar{b}\tau\tau$ yields the strongest upper limit : 292 fb to 186 fb.
- Upper limits from $b\bar{b}\gamma\gamma$ vary in between : \sim 330 fb to \sim 197 fb (at 650 GeV).
- Upper limits from di-leptonic $b\bar{b}WW$ strengthens from 1236 *fb* to 110 *fb* (at 650 GeV).
- $m_{b\bar{b}}$ serves as an important discriminator between the Zh and hh signals, thereby, weakening the contamination from $A \rightarrow Zh$.
- Hence, more cross-section required to contaminate the SM signal to the same degree as in the $H \rightarrow hh$ channel.

The h + X channels

SUSY contamination to h + X

- Bounds on squarks and gluino have already surpassed a TeV.
- The elctroweakino sector still remains as the plausible search area.
- We choose a benchmark point marginally outside the projected exclusion obtained by ATLAS for HL-LHC.
- Pair production of wino dominated $\chi_2^0 \chi_1^{\pm}$ is considered (cross-section = 420 fb).

Parameters (GeV)	Mass (GeV)	Processes	Branching Fraction
			Пассіон
$M_1 = 150, M_2 = 300$	$m_{\chi^0_2} = 296.7$	$\chi_1^{\pm} \to \chi_1^0 W^{\pm}$	100%
$\mu = 1000, m_{\tilde{t}_R} = 3000$	$m_{\chi_1^{\pm}} = 296.7$	$\chi^0_2 o \chi^0_1 h$	93.5%
	$m_{\chi_1^0} = 149.3$		
	$m_h = 125.0$		
	$m_{H^{\pm}} = 1003.0$		
	$m_H = 1000.0$		

The $\textit{Wh} + \not\!\!\!E_{\rm T}$ final state has the potential to contaminate some of the di-Higgs search channels :

 $b\bar{b}WW^* \rightarrow b\bar{b}\ell jj + E_{
m T}, \ \gamma\gamma WW^* \rightarrow \gamma\gamma\ell jj + E_{
m T}, \ 4W \rightarrow \ell^{\pm}\ell^{\pm} jjj + E_{
m T}, \ 3\ell jj + E_{
m T}$

Channel	SM background	SM <i>hh</i> production	BP2 contamination
$bb\ell jj+{ m E}_{ m T}$	1103017.13	134.34	382.88
$SS2\ell jj + E_T$	12378.49	11.96	270.31
$3\ell jj + E_T$	5389.46	15.01	291.91

- SM di-Higgs expectations for these channels are relatively small as compared to the SUSY comtaminations.
- Observation of significant number of events in these channels over and above SM backgrounds can be a potential signature of New Physics.

< □ > < 同 > < 回 > < Ξ > < Ξ

The null Higgs channels

This category of contaminant has no Higgs in the production or decay mode.

 $pp \rightarrow H(A) \rightarrow t\bar{t}$ can potentially contaminate the $b\bar{b}\tau\tau$ and $b\bar{b}WW$ final states.

- We derive upper limits on $\sigma(pp \to H(A) \to t\bar{t})$ for both final states from $b\bar{b}WW$, and $b\bar{b}\tau\tau$.
- Relatively weaker final states are obtained $\rightarrow \sigma imes Br$ values reaching to pb values.

- Lower contamination is ensured by the BDT varibale $m_{b\bar{b}}$, owing to difference in kinematics of the final state $b\bar{b}$ pair.
- Large production cross-section of heavier Higgs will be required in order to contaminate the SM di-Higgs signal.

Null Higgs channel

SUSY contamination to null Higgs channel.

We consider stop pair production : $pp o ilde{t_1} ilde{t_1}^*$, using the following benchmark :

Benchmark	Parameters (GeV)	Mass (GeV)	Processes	Branching
Points				Fraction
3rd benchmark	$M_1 = 500, M_2 = 1000$	$m_{\tilde{t}_1} = 609.3$	$ ilde{t}_1 o \chi^0_1 b W^+$	99.9%
BP3	$\mu=$ 1000, $m_{ ilde{t}_R}=$ 625	$m_{\chi_1^0} = 498.1$		
$pp ightarrow ilde{t}_1 ilde{t}_1^st$		$m_h = 125.0$		
(Cross-section:		$m_{H^{\pm}} = 1003.0$		
200 fb)		$m_H = 1000.0$		

- The benchmark point is chosen such that mass difference between $\tilde{t_1}$ and χ_1^0 is less than the top mass, ensuring the stop decays as $\tilde{t_1} \to Wb\chi_0^1$.

SM background	SM hh production	BP3 contamination
1103017.13	134.34	101.83

- A clear understanding of the Higgs self-coupling will require a precise analysis of the di-Higgs channel.
- Combination of results from multiple search channels yield a signal significance of 2.1σ .
- The effects of varying λ_{hhh} was analyzed, and it was observed that varying λ_{hhh} can significantly alter our conclusions.
- New Physics scenarios can contaminate the SM di-higgs signals. Contaminations can creep in from $H \rightarrow hh$, $A \rightarrow Zh$, $H \rightarrow t\bar{t}$, $H^{\pm} \rightarrow t\bar{b}$, $\tau\nu_{\tau}$.
- Contaminations from benchmark scenarios of squark pair production, electroweakino pair production and stop pair production were quantified. In most cases, the contaminations can pose a serious threat to the search analyses.

A D F A A F F A

- A detailed study of the less explored di-higgs final states in the context of HE-LHC. We are currently looking into the future prospect of $WW\gamma\gamma$ channel at HE-LHC.
- Moreover, a global combination of various di-Higgs signals at HE-LHC could provide interesting results concerning the projected capability of HE-LHC in probing λ .
- A detailed qualitative understanding of the alterations in the distribution of various kinematic variables emerging from different values of Higgs tri-linear coupling and aim to improve upon the robustness of the existing search strategies.
- Compilation of various allowed BSM benchmark scenarios which could possibly contaminate the di-Higgs final states.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thank you.

・ロト ・四ト ・ヨト ・ヨト

2