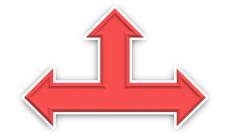
Confronting Neutrino Mass Generation Mechanism with MiniBooNE Anomaly

Sudip Jana

Max-Planck-Institut für Kernphysik Heidelberg, Germany

WHEPP XVI 2019

IIT Guwahati, India



Based on

1. arXiv: 1807.09877, Phys.Rev.Lett. 121 (2018) no.24, 241801 2. arXiv: 1808.02500, Phys.Lett.B791 (2019) 210-214 in collaboration with

E. Bertuzzo, Pedro A. N. Machado and R. Zukanovich-Funchal

Experimental Evidences

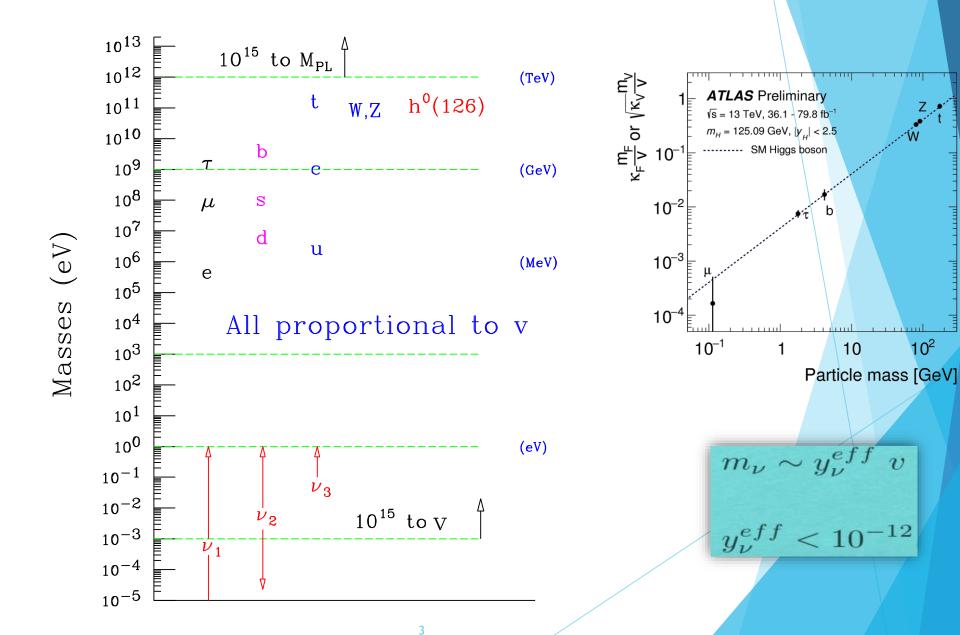
Theoretical Motivations

Neutrino Masses and Mixing

Dark Matter and Dark Energy

Matter-antimatter Asymmetry

Anomalies


Naturalness Problem

Strong CP Problem

Grand Unification

Flavor Puzzle

Neutrino Masses and Mixings > New physics beyond SM

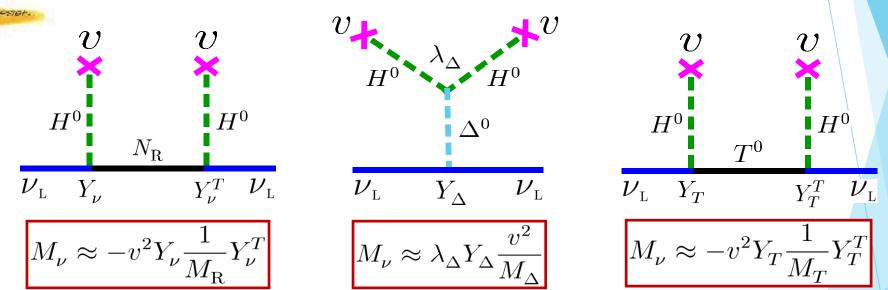
Small Neutrino Masses

- * "Technically natural" in t'Hooft sense. Small values are protected by symmetry. At a cut-off scale Λ : "natural" $\delta m_f \sim g^2/(16\pi^2) \; m_f \ln(\Lambda^2/m_f^2)$ "unnatural" $\delta m_H^2 \sim$ $\; y_t^2/(8\pi^2) \; \Lambda^2$
 - Two ways to generate small values naturally:
- Suppression by integrating out heavy states: the higher dimension $1/\Lambda^n$, the lower Λ can be.
- * Suppression by loop radiative generation: the higher loops $1/(16\pi^2)^n$, the lower cut off scale can be.

Neutrino Mass Models

• Lowest higher dim. operator $\mathcal{O}^{d=5}:\mathcal{L}_{d=5}=\frac{1}{\Lambda_{NP}}LLHH$

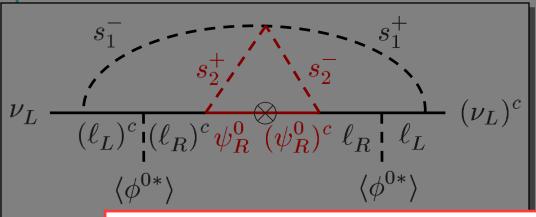
Weinberg, PRL43 (79) 1566


- Realization of Weinberg op.
 - ▶ See-saw: there are many seesaw realizations
 - * Type-I Minkowski (77), Ramond, Slansky (79), Yanagida (79), Glashow (79), Mohapatra, Senjanovic (80)
 - * Type-II Schechter, Valle (80), Lazarides, Shafi, Wetterich (81), Mohapatra, Senjanovic (81)
 - * Type-III Foot, Lew, He, Joshi (89), Ma (98)
 - * Linear, Inverse, etc ...
 - ► Loop-induced:
 - * 1-loop Zee (80), Ma (99)
 - * 2-loop Babu (88)

A natural theoretical way to understand why 3 v-masses are very small.

Type-I: SM + 3 right-handed Majorana v's

(Minkowski 77; Yanagida 79; Glashow 79; Gell-Mann, Ramond, Slanski 79; Mohapatra, Senjanovic 79)

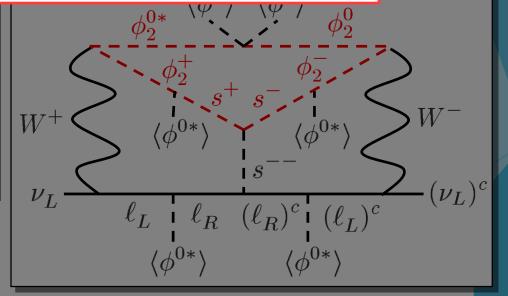

Type-II: SM + 1 Higgs triplet

(Magg, Wetterich 80; Schechter, Valle 80; Lazarides et al 80; Mohapatra, Senjanovic 80; Gelmini, Roncadelli 80)

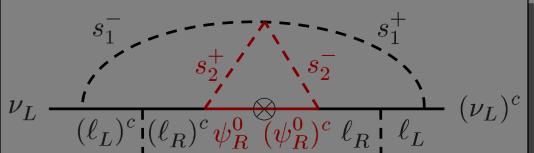
Type-III: SM + 3 triplet fermions

(Foot, Lew, He, Joshi 89)

Higher-loop models with DM


Krauss-Nasri M.L. Krauss, S. N

Many models of m_{ν}

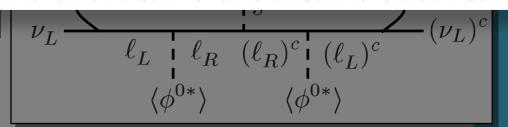

Aoki-Kanemura-Seto model

M. Aoki, S. Kanemura and O. Seto, PRL**102**, 051805 (2009) Which is the true one?

Gustafsson-No-Rivera model

M. Gustafsson, J.M. No, and M.A. Rivera, PRL**110**, 21802 (2013) Higher-loop models with DM

Krauss-Nasri M.L. Krauss, S. N

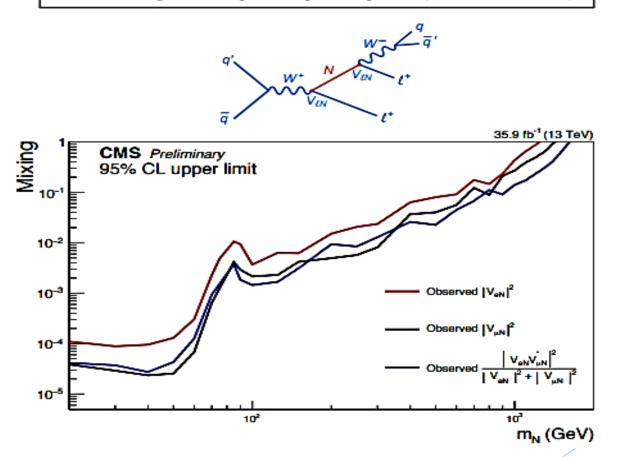


- 1. Can we test / falsify these models at the experiments?
- 2. Can we explore the new Physics Scale M?

 $^{\circ}R$ $(^{\vee}R)$ $^{\vee}R$ $(^{\circ}R)$

Aoki-Kanemura-Seto model

M. Aoki, S. Kanemura and O. Seto, PRL**102**, 051805 (2009)


Gustafsson-No-Rivera model

M. Gustafsson, J.M. No, and M.A. Rivera, PRL**110**, 21802 (2013)

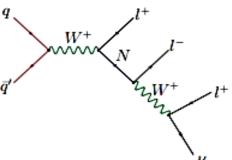
Testing Type-1 Seesaw Experimentally

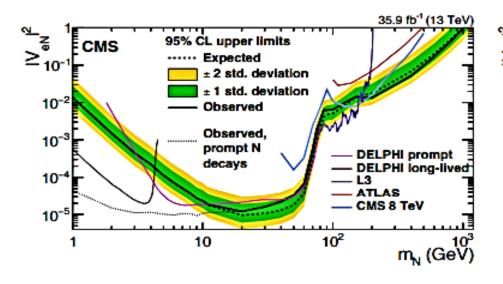
[Keung, Senjanović (PRL '83); Datta, Guchait, Pilaftsis (PRD '94); Panella, Cannoni, Carimalo, Srivastava (PRD '02); Han, Zhang (PRL '06); del Aguila, Aguilar-Saavedra, Pittau (JHEP '07); Atre, Han, Pascoli, Zhang (JHEP '09)]

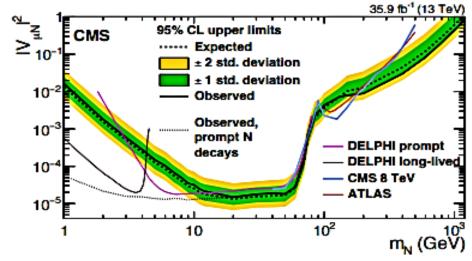
Same-sign dilepton plus jets (without ∉₇)

Chun, Das

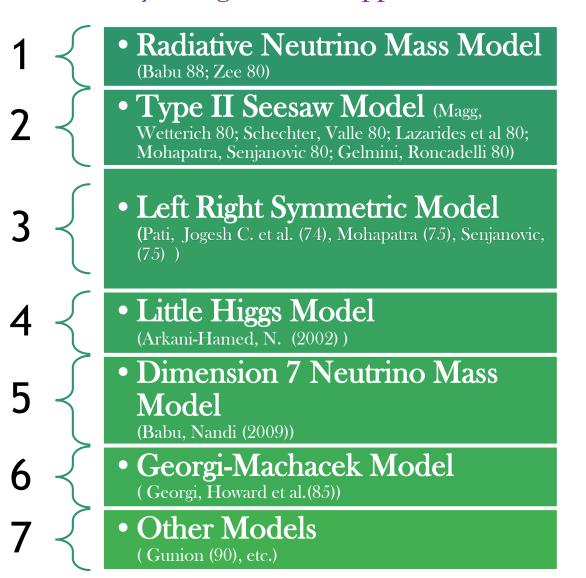
[CMS PAS EXO-17-028]

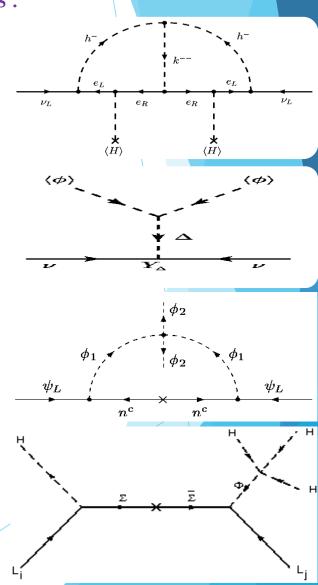

☐ Need (sub)-TeV scale heavy neutrinos with 'large' mixing with active neutrinos.




Testing Inverse Seesaw Experimentally

[del Aguila, Aguilar-Saavedra (PLB '09; NPB '09); Chen, BD (PRD '12); Das, Okada (PRD '13); Das, BD, Okada (PLB '14); Izaguirre, Shuve (PRD '15); Dib, Kim (PRD '15); Dib, Kim, Wang (PRD '17; CPC '17); Dube, Gadkari, Thalapillil (PRD '17)]

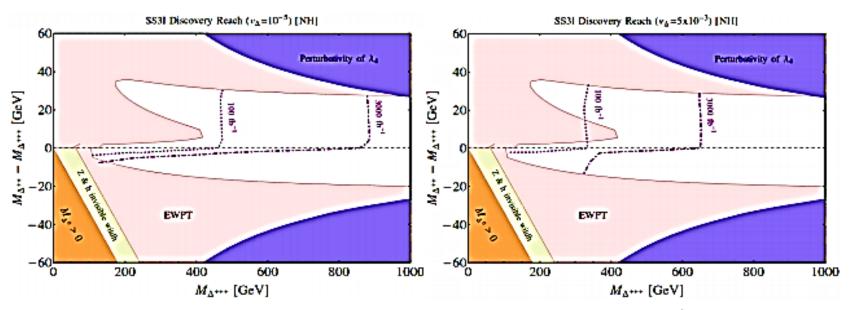

Testing Type-11 Seesaw at the LHC



Rizzo (1982); Huitu, Maalampi, Pietila, Raidal (1997); Gunion, Loomis, Pitts (1996); Akeryod, Aoki (2005); Han, Mukhopadhyaya, Ci, Wang (2005), N. Sahu, Uma Sankar (2005); Sarma, Devi, Singh (2007); Chao, Luo, Xing, Zhao (2007); Perez, Han, Huang, Li, Wang (2008); McDonald, Sahu, Sarkar (2008); Chiang, Nomura, Tsumura (2012); Dev, D. Ghosh, Okada, Saha (2013); Nayak, Parida (2015); Cai, Han, Ruiz (2017), Babu, Jana (2017)......

Doubly Charged Higgs Phenomenology

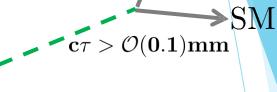

Doubly Charged Scalars appear in neutrino mass models :



Testing Type-III Seesaw at the LHC

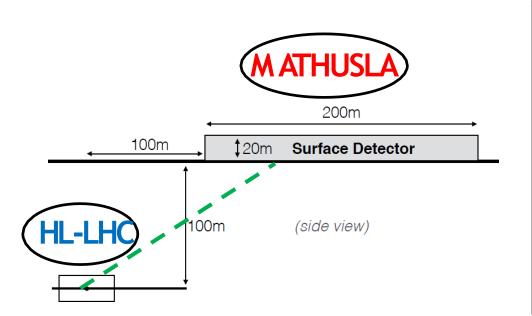
Multi-lepton signatures. [Franceschini, Hambye, Strumia (PRD '08); Li, He (PRD '09); Arhrib, Bajc, Ghosh, Han,

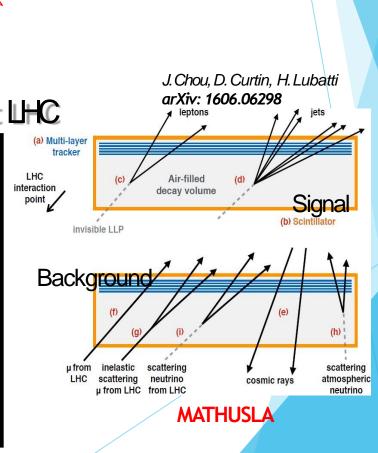
Testing Seesaw with dim=7 operator at the LHC



- Discovery potential upto 450 (950) GeV at 100 (3000) fb⁻¹ for I/W dominated region Discovery potential upto 500 (950) GeV at 100 (3000) fb⁻¹ for I/W dominated region
- Discovery potential upto 350 (700) GeV at 100 (3000) fb⁻¹ for WWW dominated region
- Covers the whole area available for $\Delta M > 0$ scenarios
- Similar results for NH and IH

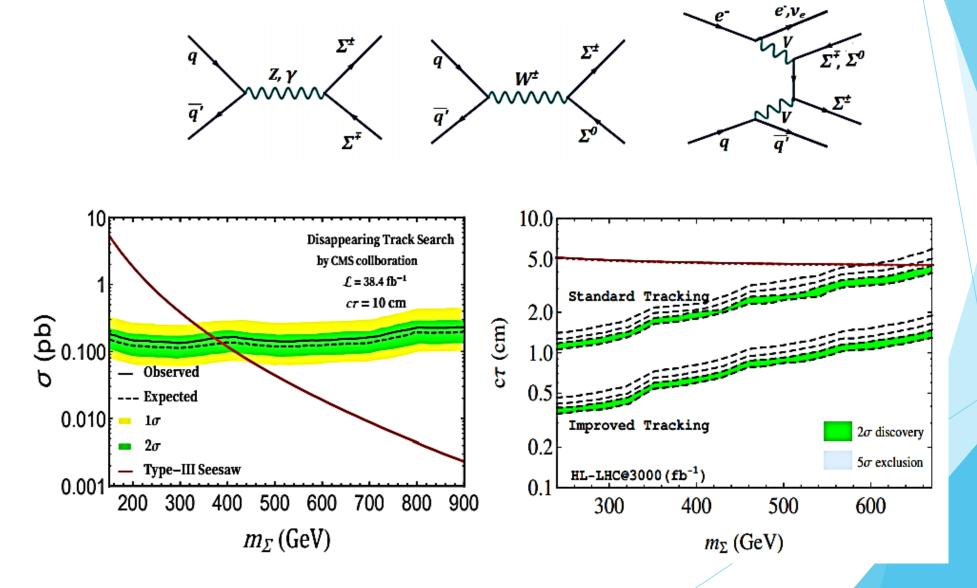
T. Ghosh, Jana, Nandi (2018) K. Ghosh, Jana, Nandi (2017)


Future displaced vertex search

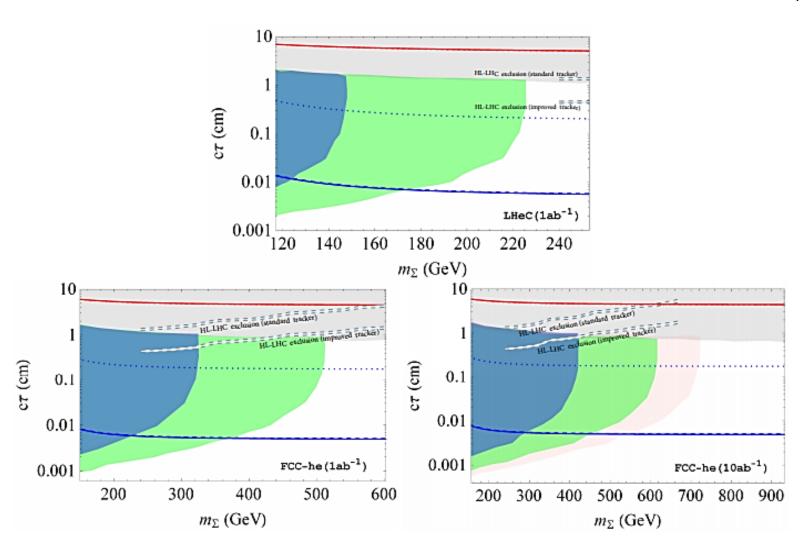

Displaced Vertex Signature

 Λ SM

- Low Standard Model Background
- > Ideal for new physics searches
- Future Displaced Vertex Searches at LHC



Future displaced vertex search Future Displaced Vertex Searches at LHC \gg SM Rare SM Higgs Decay D. Curtin, M. Peskin (2017) D. Curtin, K. Deshpande, et.al (2017) SM Higgs SJ, N. Okada, D. Raut (2018) Mitra et al. (2018) $10^5 M_X = 20 \text{ GeV}$ 1000 $\sigma_{\rm XX}$ [fb] 10 -- HL-LHC MATHUSLA 0.1 ···· LHeC ···· FCC-eh 0.001 10^{7} 10^{5} 0.110 1000 0.001 cτ (m)

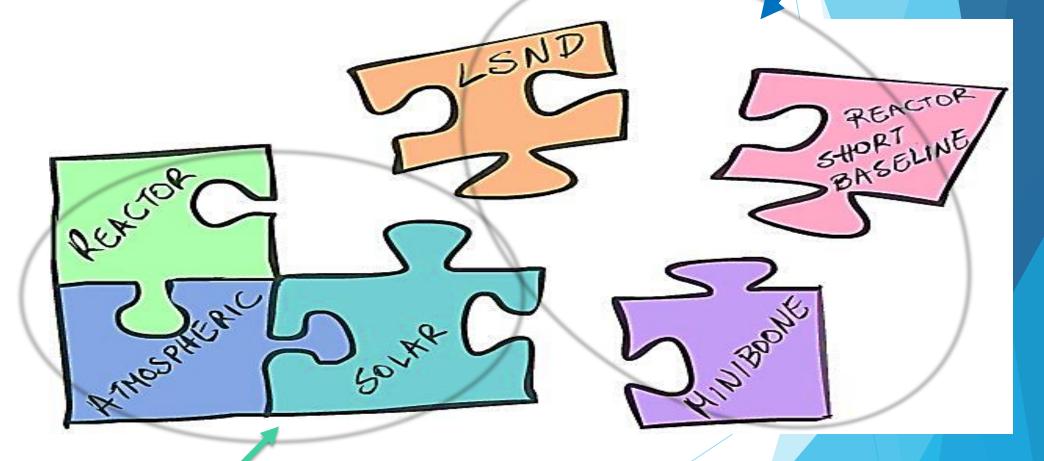

Displaced vertex search for type III seesaw

SJ, SJ,N. Okada, D. Raut (2019)

Displaced vertex search for type III seesaw

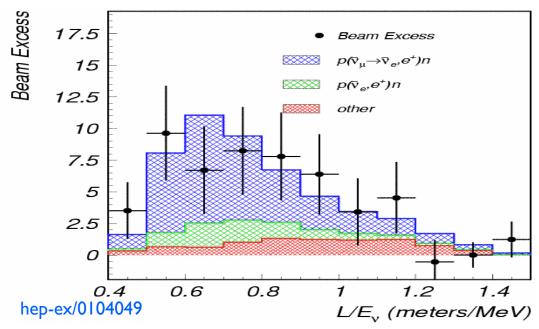
SJ, N. Okada, D. Raut (2019)

Scale of Seesaw Mechanism


- Despite numerous searches for neutrino mass models (at TeV scale) at high-energy colliders, no compelling evidence has been found so far.
- Is it really sufficient to search for new physics scale behind neutrino mass generation mechanism at LHC only?
 - *The new physics scale behind neutrino mass generation mechanism might be at low scale and which is less sensitive to high energy collider experiments
- * It may show up at low energy neutrino experiments at near future.

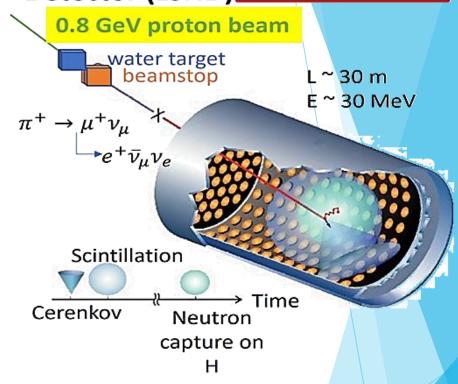
Scale of Seesaw Mechanism

- * Despite numerous searches for neutrino
- Can neutrino masses come from light physics? experiments
 - * It may show up at low energy neutrino experiments at near future.

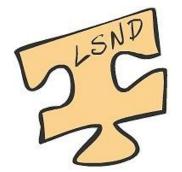

Three-neutrino oscillation: Not the full picture?

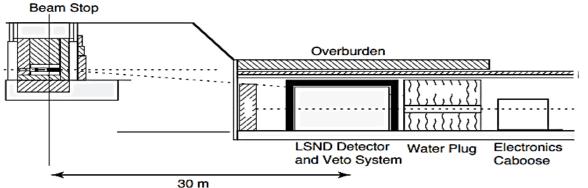
Short Baseline
Anomalies

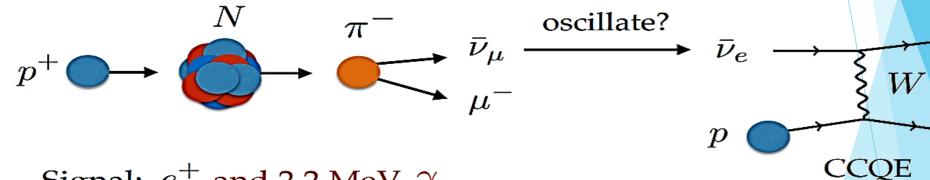
Long and Medium Baseline



LSND detected more \bar{v}_e than expected: 87.9 ± 22.4 ± 6.0 events

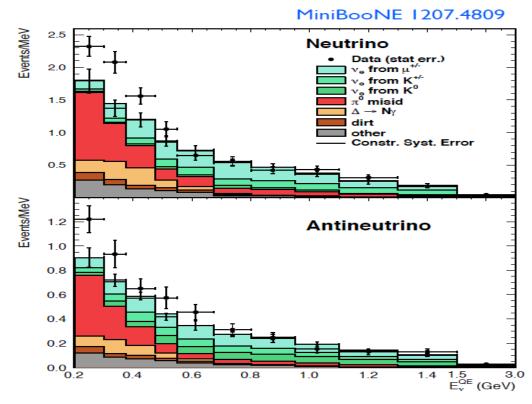

3.8 σ excess


Liquid Scintillator Neutrino Detector (LSND) Cherenkov: Scintillation = 1:5

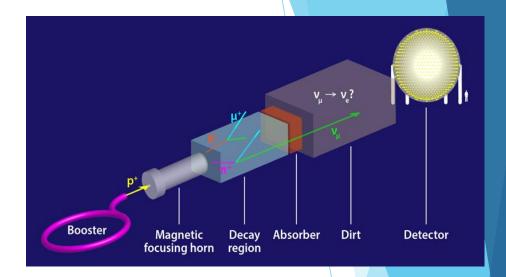

LSND neutrino source

DAR of μ^- competes with $\mu^- + (A,Z) \rightarrow \nu_{\mu} + (A,Z-1)$

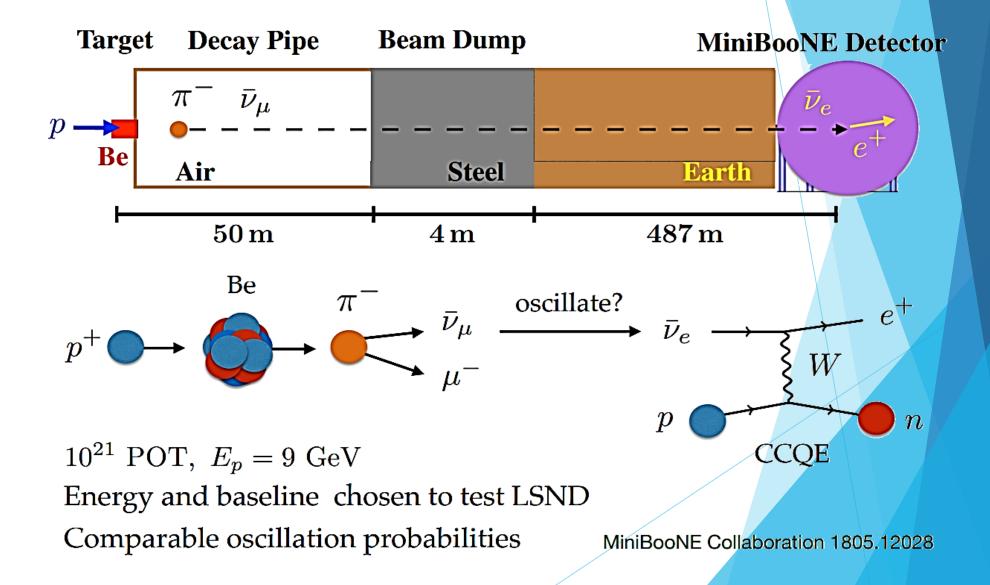
$$10^{22} \text{ POT}, E_p = 800 \text{ MeV}$$


Signal: e^+ and 2.2 MeV γ Scatter + neutron absorption

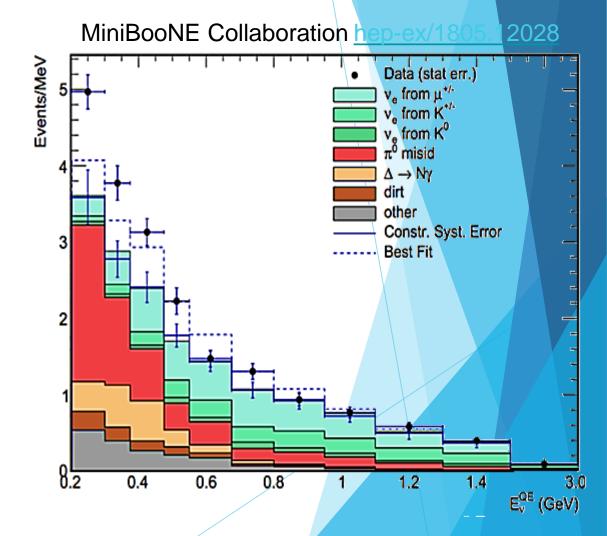
Observed 90 events Expectation of 0 events 3.8σ significance


$$P_{\rm osc} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}} \right)$$

LSND Collaboration hep-ex/0104049


•Neutrino and anti neutrino modes see excesses of v_e and \overline{v}_e (Combined is also 3.8 σ excess)

- To test the LSND indication of anti-electron neutrino oscillations
- Keep L/E same, change beam, energy, and systematic errors
- □ Baseline: L = 540 meters, ~ \times 15 LSND
- Neutrino Beam Energy: E ~ x (10-20) LSND
- Different systematics: event signatures and backgrounds different from LSND High statistics: ~ x 6 LSND
- Perform experiment in both neutrino and anti-neutrino modes.


MÍNÍBOONE'S LOW Energy Excess

MiniBooNE's Low Energy Excess

- Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short Baseline Neutrino Experiment
- Double neutrino-mode data in
 2016-2017 (6.46×10²⁰ + 6.38×10²⁰ POT)
- Event excess: 381.2 ± 85.2 (4.5 σ)

What is going on???

- · What is the nature of the excess?
- · Possible detector anomalies or reconstruction problems?
- · Incorrect estimation of the background?
- · New sources of background?
- New physics including/excluding exotic oscillation scenarios?

The origin of such excess is unclear – it could be the presence of new physics, or a large background mismodeling. However, the MiniBooNE result, if due to new physics, would revolutionize the field of particle physics.


What sort of new physics can explain these anomalies?

Beyond three-neutrino oscillations

- We can add a forth neutrino
- This neutrino must be sterile, which means it is a singlet under all standard model gauge groups
- A forth active neutrino is excluded by observations of invisible Z-decays

$$e^+e^- \to Z \to \sum_{j=e,\mu,\tau} \nu_j$$

Effective 3+1 oscillations

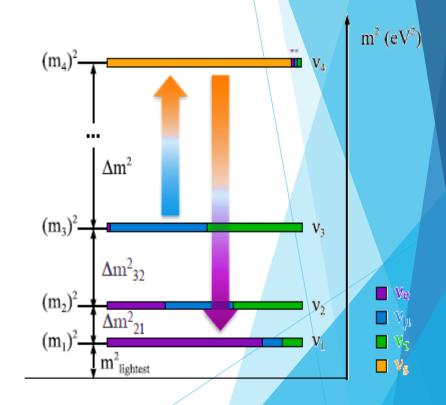
We extend the mixing matrix

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \Rightarrow \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} \end{pmatrix} U_{e4}$$

APPearance

$$P_{\alpha\beta}^{\text{SBL}} \approx \sin^2(2\theta_{\alpha\beta}) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$\sin^2(2\theta_{\alpha\beta}) = 4|U_{\alpha4}|^2|U_{\beta4}|^2$$


$$\nu_{\mu} \to \nu_e : \sin^2(2\theta_{\mu e}) = 4|U_{e4}|^2|U_{\mu4}|^2$$

@LSND, Karmen, MiniBoone, Opera

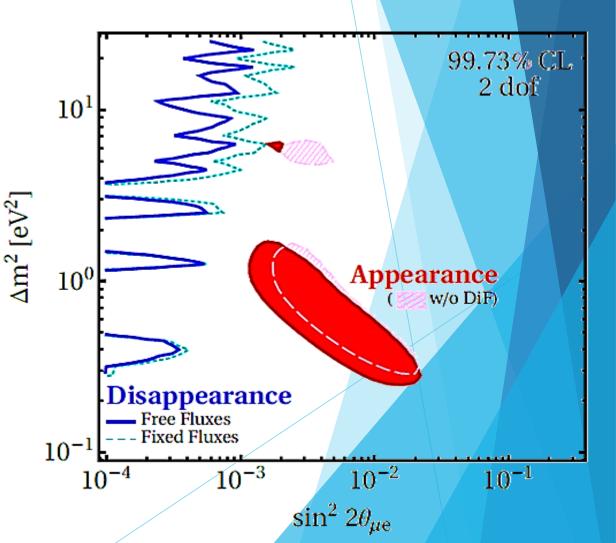
DISappearance

$$P_{\alpha\beta}^{\mathrm{SBL}} \approx \sin^2(2\theta_{\alpha\beta})\sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right) \qquad P_{\alpha\alpha}^{\mathrm{SBL}} \approx 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right) \\ \sin^2(2\theta_{\alpha\beta}) = 4|U_{\alpha4}|^2|U_{\beta4}|^2 \qquad \sin^2(2\theta_{\alpha\alpha}) = 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2) \\ \nu_{\mu} \rightarrow \nu_e : \sin^2(2\theta_{\mu e}) = 4|U_{e4}|^2|U_{\mu4}|^2 \qquad \qquad \nu_e \rightarrow \nu_e : |U_{e4}|^2 = \sin^2\theta_{14} \\ \text{@Reactors and Gallium} \\ \text{@LSND, Karmen, MiniBoone,} \\ \text{Opera} \qquad \qquad \nu_{\mu} \rightarrow \nu_{\mu} : |U_{\mu4}|^2 = \sin^2\theta_{24}\cos^2\theta_{14} \\ \text{@atmospherics and accelerators} \\ \text{@atmospherics and accelerators} \\ \text{@atmospherics} \\ \text{n} = \frac{1 - \sin^2(2\theta_{\alpha\alpha}) \sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right)}{4E} \\ \text{n} = \frac{1 - \sin^2(2\theta_{\alpha\alpha}) \sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right)}{2E} \\ \text{n} = \frac{1 - \sin^2(2\theta_{\alpha\alpha}) \sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right)}{2E}$$

$$\begin{split} P_{\alpha\alpha}^{\mathrm{SBL}} &= 1 - 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2)\sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right) \\ P_{\alpha\beta}^{\mathrm{SBL}} &= 4|U_{\alpha4}|^2|U_{\beta4}|^2\sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right). \\ \sin^2&2\theta_{\,\,\mu\mathrm{e}} = 4\,\,|U_{\mathrm{e}4}\,U_{\mu4}\,|^2 \end{split}$$
 Leads to ν_{e} disappearance disappearance

$$sin^2 2\theta_{\mu e} = 4 \left| U_{e4} U_{\mu 4} \right|^2$$

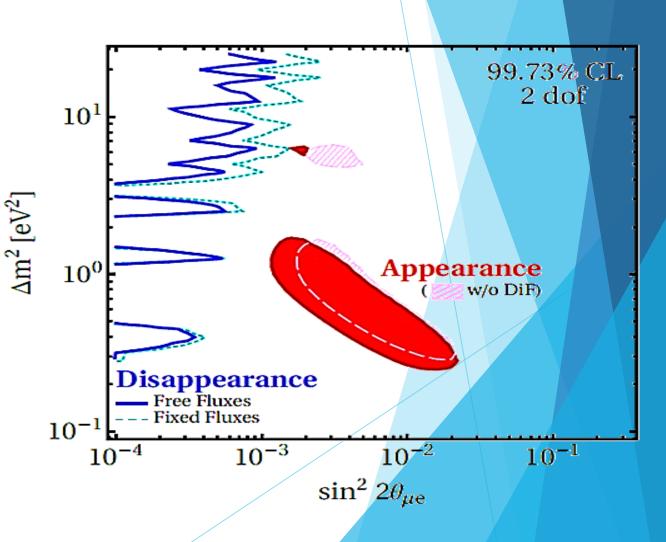
Leads to v_{μ} to v_{e} disappearance


• $\underline{2 \text{ variables}}$: U_{e4} , U_{u4}

• <u>3 data sets</u>: v_e- Disappearance

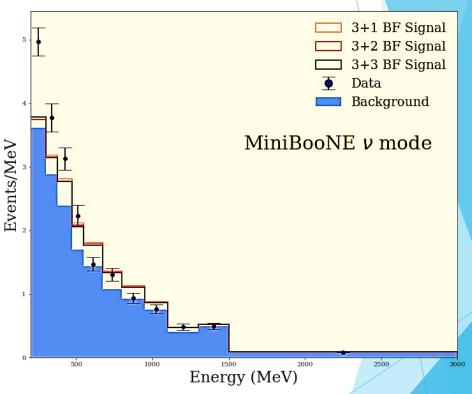
 v_u - Disappearance

v_e- Appearance


Mona Dentler et al. JHEP 1808 (2018) 010

 $sin^2 2\theta_{\mu e} = 4 |U_{e4} U_{\mu 4}|^2$

4.7 **o** tension between
Appearance and
Disappearance data sets
under eV sterile
interpretation


Mona Dentler et al. JHEP 1808 (2018) 010 Collin et al. 1602.00671 Gariazzo et al 1703.00860

> 3+N GLOBAL FITS

Shortcoming:
Failure to accommodate
MiniBooNE low-energy excess.

"3+N
STANDARD
STERILE
STERILE
NEUTRINOS":
NEUTRINOSTINISUFFICIENT

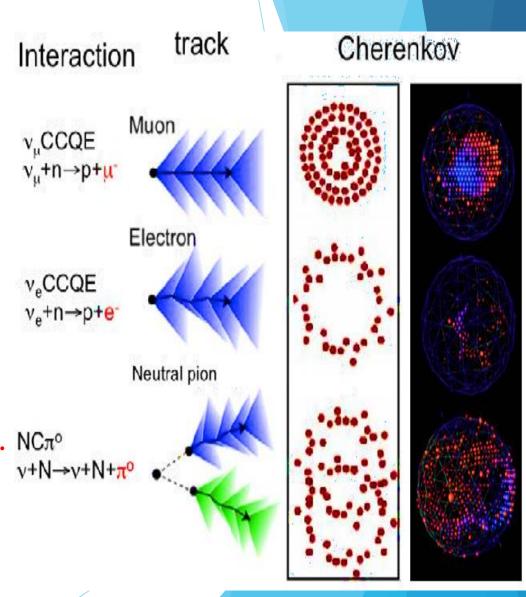
D. Cianci, et al. (Talk presented at Applied Antineutrino Physics Workshop 2018)

Sterile neutrinos require $\sin^2 2\theta_{\mu e} > 10^{-3}$, $m_4 < \text{few eV}$

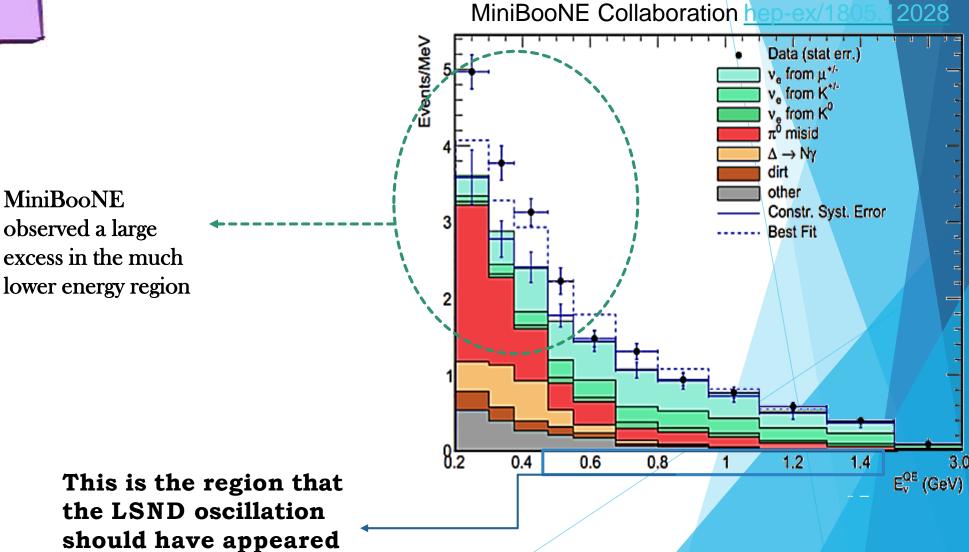
Generic early universe thermalization

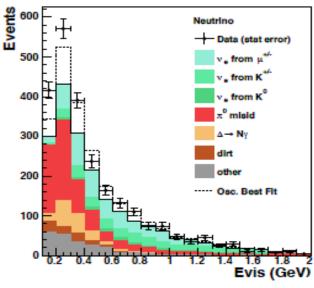
$$\Gamma > H \implies \sin^2 2\theta_{\mu e} G_F^2 T^5 > \sqrt{g_*} \frac{T^2}{m_{\rm Pl}} \implies n_4 \sim n_{\nu}$$

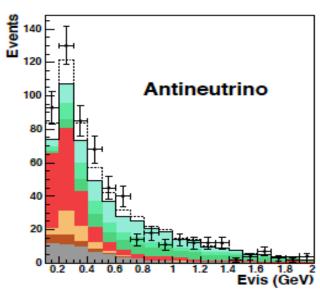
Excluded by BBN/CMB $N_{\mathrm{eff}} = 2.99 \pm 0.17$ Planck 1807.06209

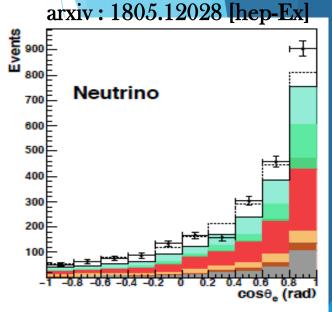

Unless max temperature satisfies $T_{\rm max} \lesssim 15~{
m MeV} \left(\frac{10^{-3}}{\sin^2 2\theta_{\mu e}}\right)^{1/3}$

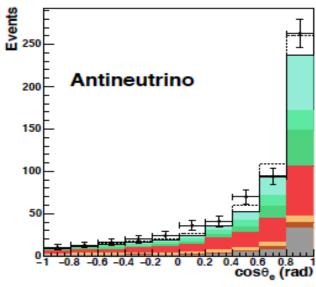
- □ Explanation of MiniBooNE's low energy excess
- Sterile v at the eV scale present strong tension between data sets
- Cosmological bounds further threat the eV sterile v hypo
- **❖** Is there an explanation that is not ruled out?
- ❖ Is there a "real model" for these explanations?
- **Can this relate to any of the theoretical problems of the SM?**


* Explanation of MiniBooNE's low energy excess

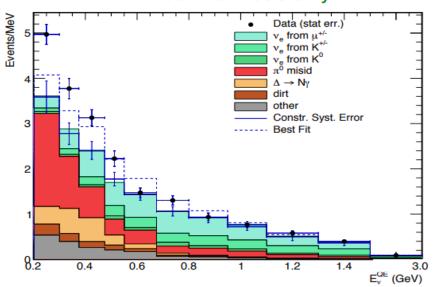

- ➤ MiniBooNE is a mineral oil (CH₂) detector that can observe Cherenkov radiation of charged particles.
- Crucially, it could not distinguish electron induced
 Cherenkov cones from photon induced Cherenkov cones. NCπ°
- Excess is correlated with beam in power, angle and timing. It is present in positive and negative horn polarities. It is not present in beam dump configuration

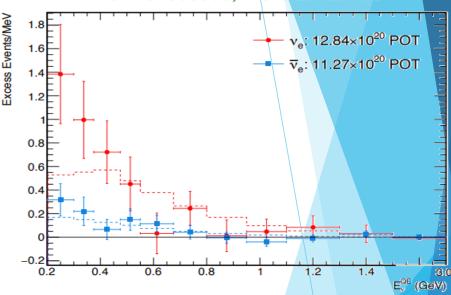






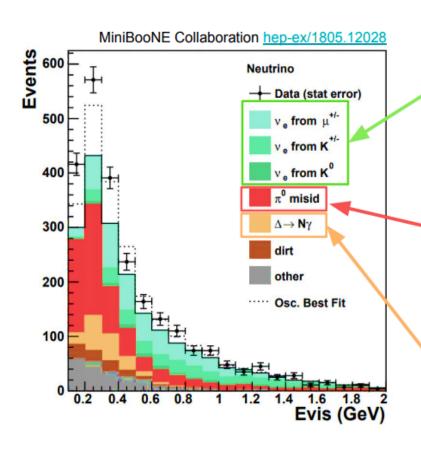
- ➤ Angular spectrum is forward, but not that much
- > Scattering on electrons would typically lead to $\cos \theta > 0.99$
- ➤ Decays of invisible light (<10 MeV) particles produced in the beam would also lead to forward spectrum
- ➤ The Cherenkov and scintillation light emitted by charged particles traversing the detector are used for particle identification and neutrino energy reconstruction, assuming the kinematics of CCQE scattering.





Both excesses, BG subtracted

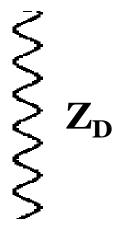
$$E_{\nu}^{(\text{reconst.})} = \frac{2m_n E_e + m_p^2 - m_n^2 - m_e^2}{2(m_n - E_e + \cos\theta_e \sqrt{E_e^2 - m_e^2})}$$


Measure charged lepton energy/angle

Observed ~ 400 events, PMNS predicts 0

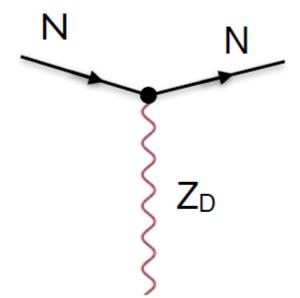
Combined $\nu/\bar{\nu}$ modes: 4.8σ excess

Possible Explanations: Motivated by backgrounds

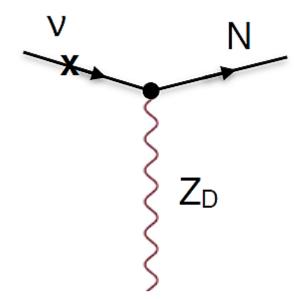

Intrinsic \mathbf{v}_{e} in the beam? Constrained by measuring \mathbf{v}_{μ} which come from the same π decay as the μ 's that subsequently produce the \mathbf{v}_{e} .

 $\pi^{\rm o}$ misidentification? In which the second shower was missed or incorrectly reconstructed. MiniBooNE measured the largest sample of NC $\pi^{\rm o}$ events ever collected and used this is constrain the exact rate of $\pi^{\rm o}$'s for the CCQE analysis.

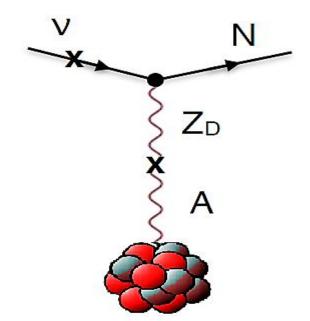
Radiative Δ **decay**? This has never been observed in the neutrino sector. MiniBooNE bound it using their NC π^{o} measurements which agrees well with best theoretical calculations. The biggest channel of interest to MicroBooNE's photon LEE analysis.


A LIGHT DARK SECTOR - THE IDEA

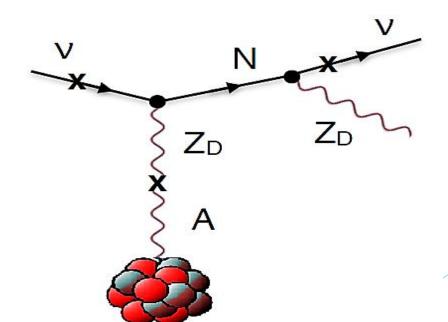
There is a dark sector with a novel interaction


A LIGHT DARK SECTOR - THE IDEA

- There is a dark sector with a novel interaction
- ➤ Right-handed neutrinos are part of the dark sector and are subject to new interaction


* Explanation of MiniBooNE's low energy excess A LIGHT DARK SECTOR - THE IDEA

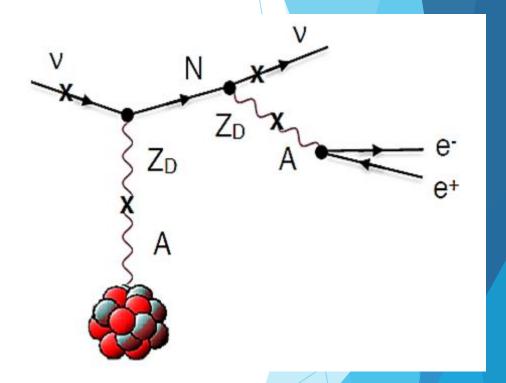
- > There is a dark sector with a novel interaction
- ➤ Right-handed neutrinos are part of the dark sector and are subject to new interaction
- ➤ Mixing between RH and LH neutrinos leads to interaction in active neutrino sector


A LIGHT DARK SECTOR - THE IDEA

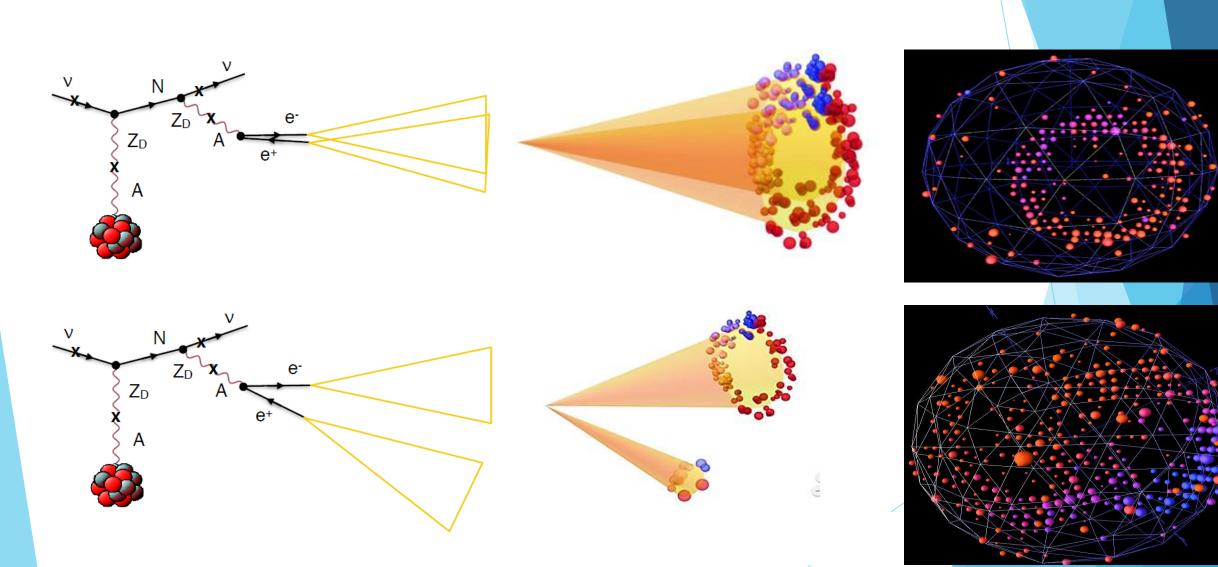
- > There is a dark sector with a novel interaction
- ➤ Right-handed neutrinos are part of the dark sector and are subject to new interaction
- ➤ Mixing between RH and LH neutrinos leads to interaction in active sector
- \triangleright Mixing between Z_D and photon leads to interaction with protons

A LIGHT DARK SECTOR - THE IDEA

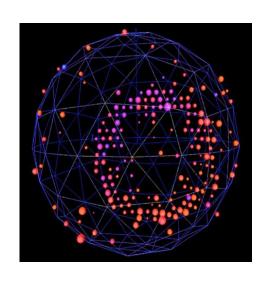
- > There is a dark sector with a novel interaction
- ➤ Right-handed neutrinos are part of the dark sector and are subject to new interaction
- ➤ Mixing between RH and LH neutrinos leads to interaction in active sector
- \triangleright Mixing between Z_D and photon leads to interaction with protons

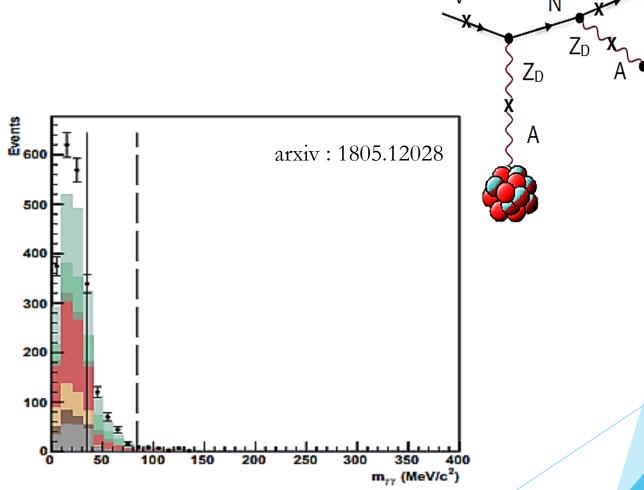

A LIGHT DARK SECTOR - THE IDEA

- > There is a dark sector with a novel interaction
- ➤ Right-handed neutrinos are part of the dark sector and are subject to new interaction
- ➤ Mixing between RH and LH neutrinos leads to interaction in active sector
- \triangleright Mixing between Z_D and photon leads to interaction with protons

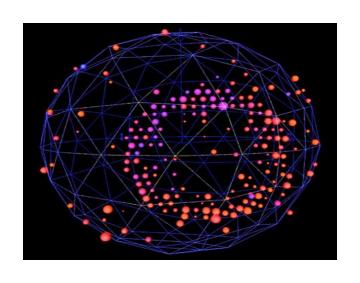

* Explanation of MiniBooNE's low energy excess A LIGHT DARK SECTOR - THE IDEA

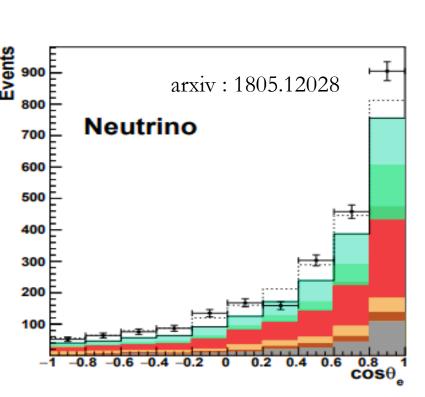
- > There is a dark sector with a novel interaction
- ➤ Right-handed neutrinos are part of the dark sector and are subject to new interaction
- ➤ Mixing between RH and LH neutrinos leads to interaction in active neutrino sector
- ➤ Mixing between Z_D and photon leads to interaction with protons
- > Relevant part of the Lagrangian :

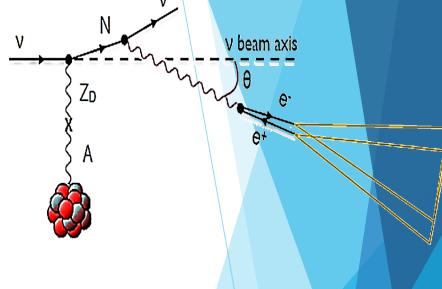



$$\mathcal{L}_{\mathcal{D}} \supset \frac{m_{Z_{\mathcal{D}}}^2}{2} Z_{\mathcal{D}\mu} Z_{\mathcal{D}}^{\mu} + g_{\mathcal{D}} Z_{\mathcal{D}}^{\mu} J_{\mathcal{D}\mu} + e\epsilon Z_{\mathcal{D}}^{\mu} J_{\mu}^{\text{em}} + \frac{g}{c_W} \epsilon' Z_{\mathcal{D}}^{\mu} J_{\mu}^{\text{Z}}$$

A LIGHT DARK SECTOR - THE IDEA

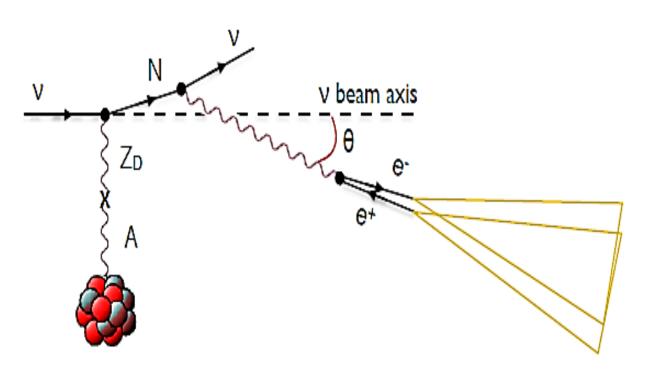


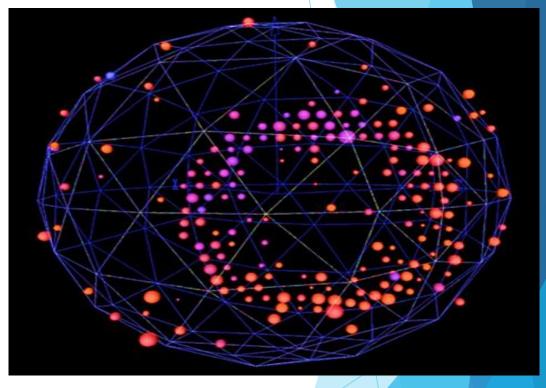




If e^+e^- pair is collimated ($\cos\theta_{ee} > 0.99$ -ish), it will be classified as e-like

A LIGHT DARK SECTOR - THE IDEA





We have to get this angular spectrum

A LIGHT DARK SECTOR - THE IDEA

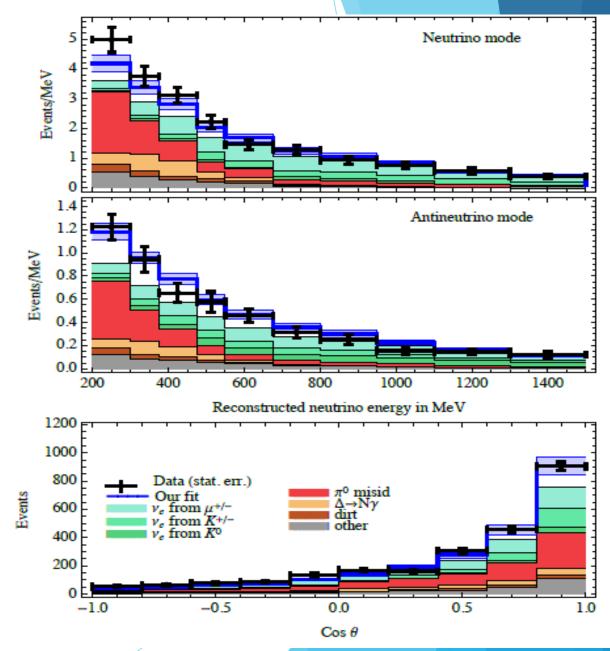
- (1) N_D should be heavy (> 100 MeV) so its decay products are not so boosted
- (2) Z_D should be light (< 60 MeV) so that the e⁺e⁻ pair is collimated

Fit to energy spectrum only (Official MB data release)

Benchmark Points:

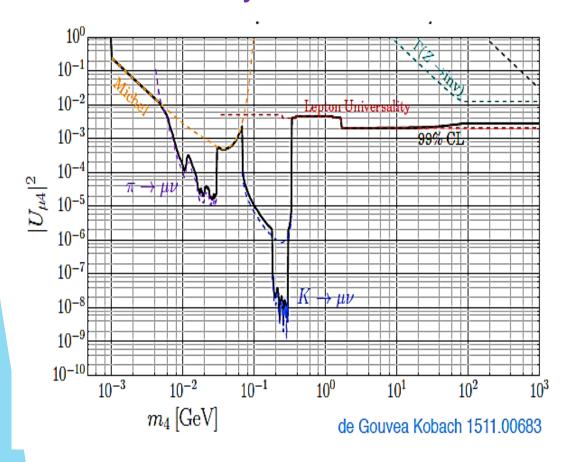
$$m_N = 420 \text{ MeV}$$

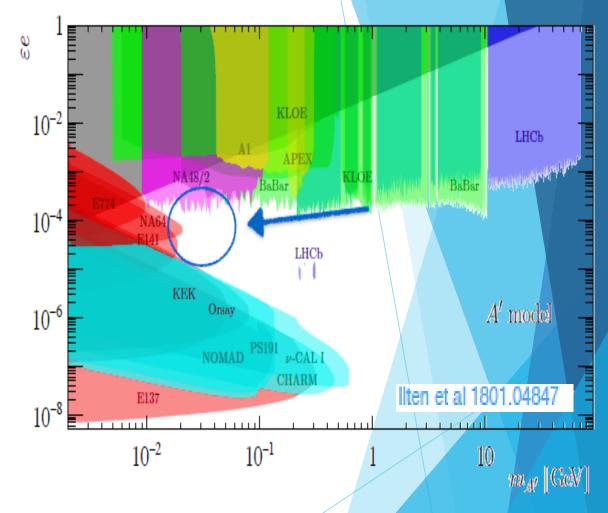
$$m_{ZD} = 30 \,\text{MeV}$$

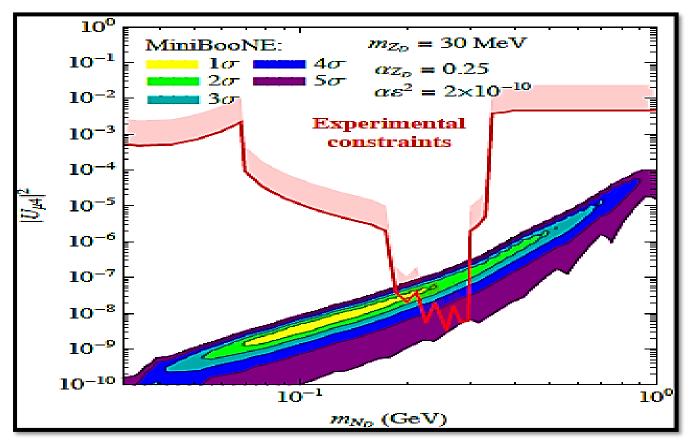

$$|U_{\mu 4}|^2 = 9 \times 10^{-7}$$

$$\alpha_D = 0.25$$

$$\alpha \varepsilon^2 = 2 \times 10^{-10}$$


$$\chi^2/\text{dof} = 33.2/36$$


Bertuzzo et al 1807.09877
See also Ballett et al 1808.02915
for different realization of the mechanism

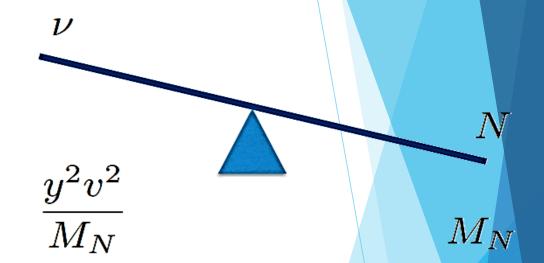

Constraint on Light Dark Sector

Model Independent Constraint on Heavy Sterile Neutrino

- > Z_D phenomenology is similar to dark photon case
- ➤ LHC constraints are not expected to be stringent below 1 GeV

Bertuzzo et al 1807.09877

Region of our model in the $|U_{\mu 4}|^2$ versus m_{N_D} plane satisfying MiniBooNE data at 1σ to 5σ CL, for the hypothesis $m_{Z_D} = 30$ MeV, $\alpha_{Z_D} = 0.25$ and $\alpha \epsilon^2 = 2 \times 10^{-10}$. The region above the red curve is excluded at 99% CL by meson decays, the muon decay Michel spectrum and lepton universality


Connection to Neutrino Mass Generation Mechanism

*Standard/Type I Seesaw

$$yNH\ell + M_NNN$$

$$\frac{y^2\ell H\ell H}{M_N}$$

$$m_
u \sim rac{y^2 v^2}{M_N}$$

$$m_{\nu} \sim 0.1 \mathrm{eV}$$

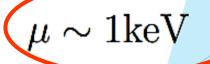
$$y \sim 0.1$$

$$m_{\nu} \sim 0.1 {\rm eV}$$
 $y \sim 0.1$ $M_N \sim 10^{12} {\rm GeV}$

Lepton number is broken at very high scale M

*Inverse Seesaw

$$y\Psi^cH\ell + m_{\Psi}\Psi\Psi^c + \frac{1}{2}\mu\Psi\Psi$$

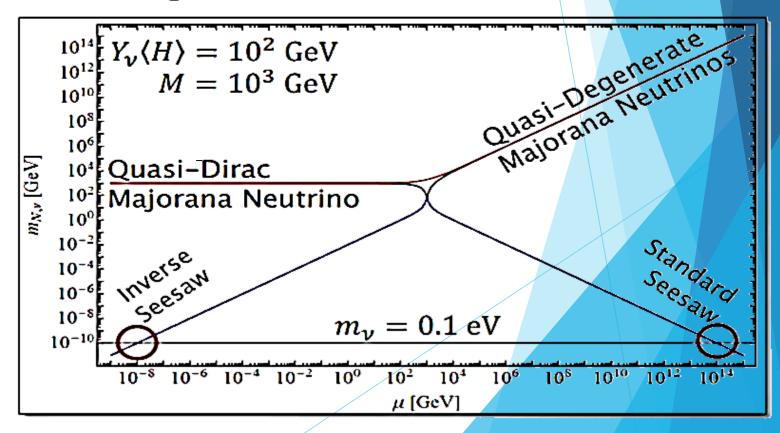

 Ψ, Ψ^c Pseudo-Dirac

$$m_
u \sim rac{y^2 v^2}{m_\Psi^2} \left(\mu \right)$$

 $y \sim 0.1 \quad m_{\Psi} \sim 1 \text{TeV}$

• Why μ is much smaller than TeV scale?

Scale of Seesaw Mechanism


- Seesaw I mechanism with TeV scale heavy neutrinos
 - Standard Seesaw with small Yukawa couplings

$$Y_{\nu} \approx 10^{-6} \sqrt{M_N/\text{TeV}}$$

- "Bent" Seesaw I mechanisms (e.g. Inverse Seesaw)
 - Decouple Λ_{LNV} from heavy neutrino mass
 - Example

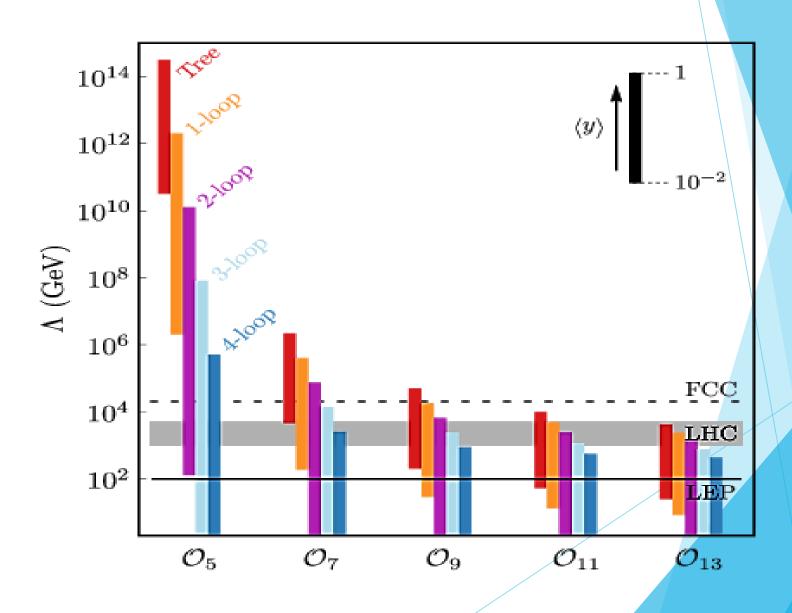
$$\begin{pmatrix}
0 & Y_{\nu}\langle H \rangle & 0 \\
Y_{\nu}\langle H \rangle & \mu & M \\
0 & M & \mu
\end{pmatrix}$$

- Large Yukawa couplings ≈ 10⁻²
- Quasi-Dirac heavy neutrino

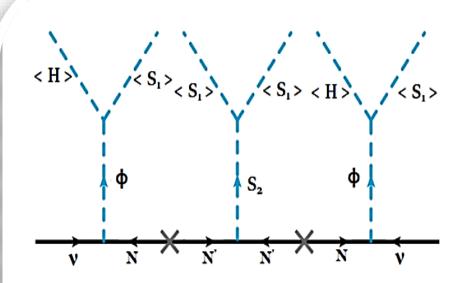
Scale of Seesaw Mechanism

- * Despite numerous searches for neutrino
- Can neutrino masses come from light physics? experiments
 - It may show up at low energy neutrino experiments at near future.

Neutrino masses from light physics


In an effective theory, the Lagrangian should be described as

$$\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{\Lambda_{NP}} \mathcal{O}^{d=5} + \frac{1}{\Lambda_{NP}^2} \mathcal{O}^{d=6} + \frac{1}{\Lambda_{NP}^3} \mathcal{O}^{d=7} + \cdots$$


Neutrino masses from a n-loop-induced dim-d operator

$$m_{\nu} = v \times \left(\frac{1}{16\pi^2}\right)^n \times \left(\frac{v}{\Lambda_{\rm NP}}\right)^{d-4}$$

Scale of Seesaw Mechanism

Neutrino masses from light phy

$$\mathcal{L}_{\nu}^{\text{d=9}} \sim y_{\nu}^{2} y_{N} \frac{\mu^{2}}{M_{H_{\mathcal{D}}}^{2}} \frac{\mu'}{M_{S'_{\mathcal{D}}}^{4}} \frac{(\overline{L^{c}}H)(H^{T}L)}{m^{2}} (S_{1}^{*}S_{1})^{2}$$

Neutrino masses from D=9 operator

All scales involved may be below electroweak

Light Z_D , v-N mixing, Z_D -v-N coupling, kinetic mixing unavoidable

Neutrino masses from light physi

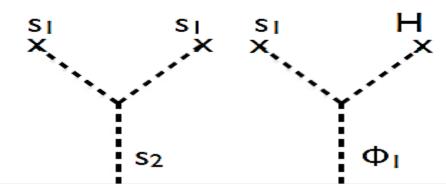
Gauge $U(1)_D$: SM has no charge, RH neutrinos N have charge +1

Anomaly cancellation: N' with opposite charge should be included

anomaly cancellation is a requirement to have a consistent QFT

Walks and quacks like inverse seesaw

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m & 0 \\ m & 0 & M \\ 0 & M & \mu \end{pmatrix} \begin{matrix} \mathsf{V} & 0 \\ \mathsf{N} & + \\ \mathsf{N}' & - \end{matrix} \Longrightarrow m_{\nu} = \mu \frac{m^2}{M^2}$$

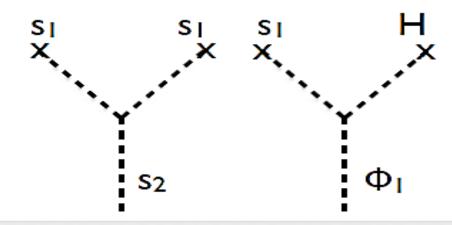

m and μ are forbidden by dark symmetry, they need to be generated dynamically

Neutrino masses from light ph

Minimum scalar content

$$\mathcal{M}_{
u} = \left(egin{array}{ccc} 0 & y\phi_1 & 0 \\ y\phi_1 & 0 & M \\ 0 & M & y's_2 \end{array}
ight) \qquad egin{array}{ccc} \phi_{\mathrm{I}} = \mathrm{doublet} \ \mathrm{with} \ \mathrm{dark} \ \mathrm{charge} + \mathrm{I} \\ \mathrm{s}_2 = \mathrm{singlet} \ \mathrm{with} \ \mathrm{dark} \ \mathrm{charge} + \mathrm{2} \end{array}$$

Add s_1 with charge +1 and something special happens: Φ_1 and s_2 start with no vevs, s_1 develops a vev like the Higgs

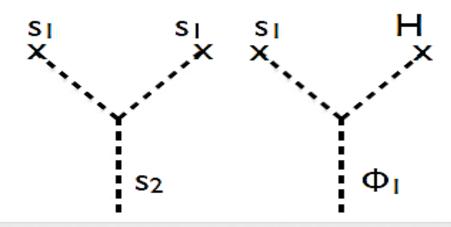

 Φ_1 and s_2 vevs are **induced**, like in type II seesaw, and thus can be naturally very small!

Neutrino masses from light ph

Minimum scalar content

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & y\phi_1 & 0 \\ y\phi_1 & 0 & M \\ 0 & M & y's_2 \end{pmatrix} \qquad \begin{array}{c} \Phi_{\rm I} = \text{doublet with dark charge +I} \\ {\rm s_2 = singlet \ with \ dark \ charge +2} \end{array}$$

Add s_1 with charge +1 and something special happens: Φ_1 and s_2 start with no vevs, s_1 develops a vev like the Higgs


 Φ_1 and s_2 vevs are **induced**, like in type II seesaw, and thus can be naturally very small!

Neutrino masses from light physics

Minimum scalar content

$$\mathcal{M}_{oldsymbol{
u}} = \left(egin{array}{ccc} 0 & y\phi_1 & 0 \ y\phi_1 & 0 & M \ 0 & M & y's_2 \end{array}
ight) egin{array}{ccc} \mathcal{L}_{
u} = -y_
u \, \overline{L} \widetilde{\phi} N + y_N \, S_2 \, \overline{N} N^c + y_{N'} \, S_2^* \, \overline{N'} N'^c \ + m \, \overline{N'} N^c + ext{h.c.} \end{array}
ight)$$

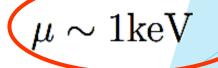
Add s_1 with charge +1 and something special happens: Φ_1 and s_2 start with no vevs, s_1 develops a vev like the Higgs

 Φ_I and s_2 vevs are **induced**, like in type II seesaw, and thus can be naturally very small!

*Inverse Seesaw

$$y\Psi^cH\ell + m_{\Psi}\Psi\Psi^c + \frac{1}{2}\mu\Psi\Psi$$

 Ψ, Ψ^c Pseudo-Dirac


$$m_
u \sim rac{y^2 v^2}{m_\Psi^2} \left(\mu \right)$$

 $y \sim 0.1 \quad m_{\Psi} \sim 1 \text{TeV}$

[Mohapatra, 86]

[Mohapatra, Valle, 86]

• Why μ is much smaller than TeV scale?

Neutrino masses from light physics

Vacuum Expectation Values

$v~({ m GeV})$	ω_1 (MeV)	$v_{\phi} \; (\text{MeV})$	ω_2 (MeV)
246	136	0.176	0.65

Coupling Constants

λ_H	$\lambda_{H\phi} = \lambda'_{H\phi}$	λ_{HS_1}	λ_{HS_2}	
0.129	10-3	10^{-3}	-10^{-3}	
$\lambda_{\phi S_1}$	$\lambda_{\phi S_2}$	λ_{S_1}	$\lambda_{S_1S_2}$	
10^{-2}	10-2	2	0.01	
μ (GeV)	μ' (GeV)	α	$g_{\mathcal{D}}$	
0.15	0.01	10^{-3}	0.22	

Bare Masses

m_{ϕ} (GeV)	m_2 (GeV)
100	5.51

$$\begin{split} V &= -\,m_H^2(H^\dagger H) + m_\phi^2(\phi^\dagger \phi) - m_1^2 S_1^* S_1 + m_2^2 S_2^* S_2 \\ &- \left[\frac{\mu}{2} S_1(\phi^\dagger H) + \frac{\mu'}{2} S_1^2 S_2^* + \frac{\alpha}{2} (H^\dagger \phi) S_1 S_2^* + \text{h.c.} \right] \\ &+ \lambda'_{H\phi} \phi^\dagger H H^\dagger \phi + \sum_{\varphi} \lambda_{\varphi} (\varphi^\dagger \varphi)^2 \\ &+ \sum_{\varphi < \varphi'} \lambda_{\varphi\varphi'} (\varphi^\dagger \varphi) (\varphi'^\dagger \varphi') \,. \end{split}$$

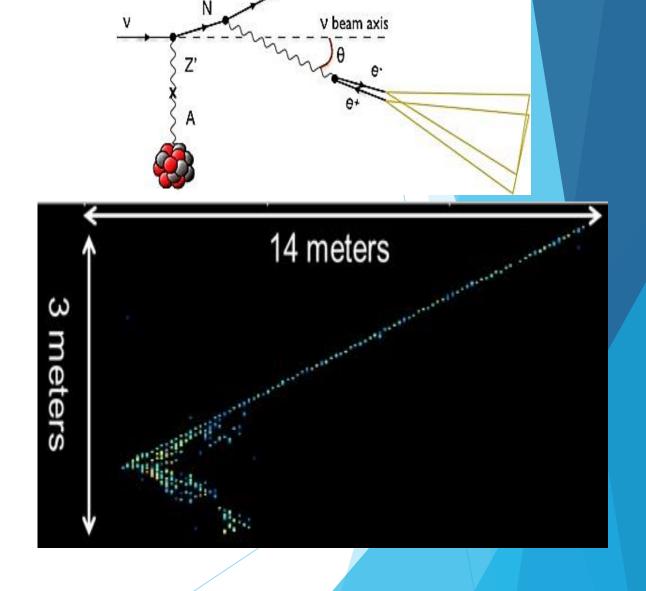
$$v_{\phi} \simeq \frac{1}{8\sqrt{2}} \left(\frac{\alpha \mu' \, v \omega_1^3}{M_{S_{\mathcal{D}}'}^2 M_{H_{\mathcal{D}}}^2} + 4 \frac{\mu \, \omega_1 v}{M_{H_{\mathcal{D}}}^2} \right) \quad \omega_2 \simeq \frac{1}{8\sqrt{2}} \left(\frac{\alpha \mu \, v^2 \omega_1^2}{M_{S_{\mathcal{D}}'}^2 M_{H_{\mathcal{D}}}^2} + 4 \frac{\mu' \, \omega_1^2}{M_{S_{\mathcal{D}}'}^2} \right)$$

Masses of the Physical Fields

$m_{h_{\mathrm{SM}}}$ (GeV)	$m_{H_{\mathcal{D}}}$ (GeV)	$m_{S_{\mathcal{D}}}$ (MeV)	$m_{S_{\mathcal{D}}'}$ (MeV)	$m_{H_{\mathcal{D}}^{\pm}}$ (GeV)	$m_{A_{\mathcal{D}}}$ (GeV)	$m_{a_{\mathcal{D}}}$ (MeV)	$m_{Z_{\mathcal{D}}}$ (MeV)	$m_{N_{\mathcal{D}}}$ (MeV)
125	100	272	320	100	100	272	30	150

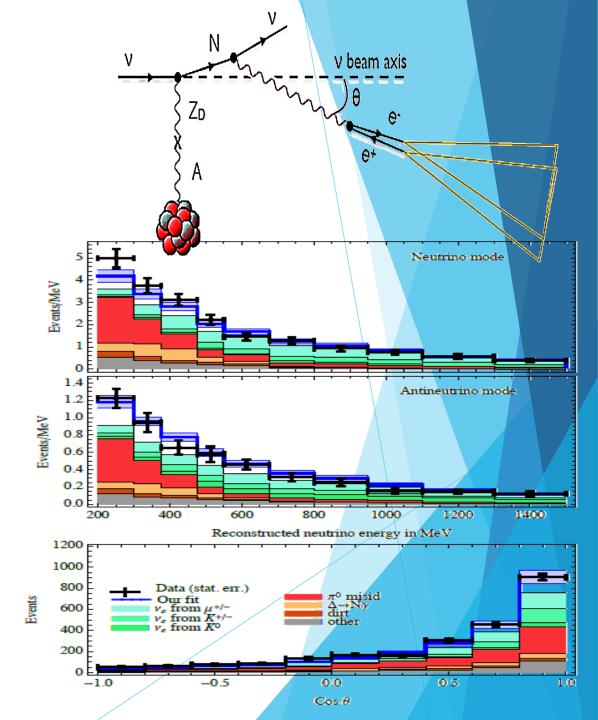
Mixing between the Fields

$\theta_{H\phi}$	θ_{HS_1}	θ_{HS_2}	$\theta_{\phi S_1}$	$\theta_{\phi S_2}$	$\theta_{S_1S_2}$	$e\epsilon$	ϵ'	$ U_{\alpha N} ^2$
1.3×10^{-6}	2.1×10^{-6}	10^{-8}	1.2×10^{-3}	8.3×10^{-7}	3.4×10^{-2}	2×10^{-4}	3.6×10^{-14}	$O(10^{-6})$


Phenomenology on other neutrino experiment

MiniBooNE's signature: Collimated e+e-pair in MINOS+, NOvA, or T2K is likely be tagged as v_e event

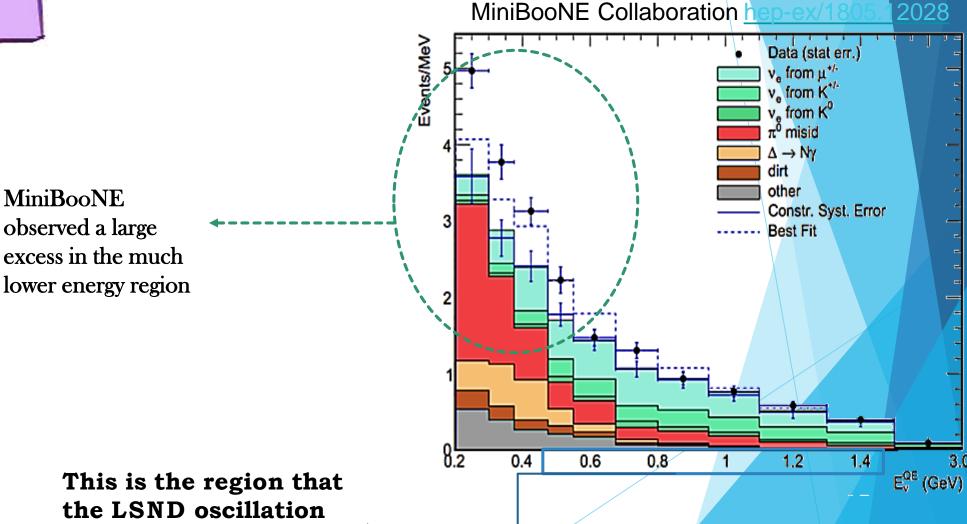
General signature:

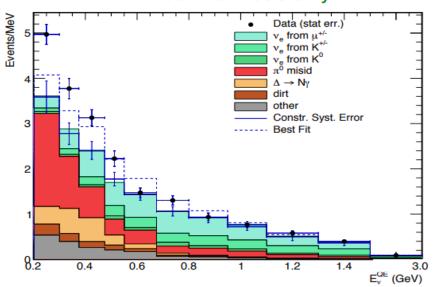

Heavy enough Z_D can decay to $\mu^+\mu^-$ or $\pi^+\pi^-$ pair, much easier signature (MINOS+ is magnetized...)

Lower energy experiments (reactor and solar neutrinos) as well as electron scattering may lack energy to produce N

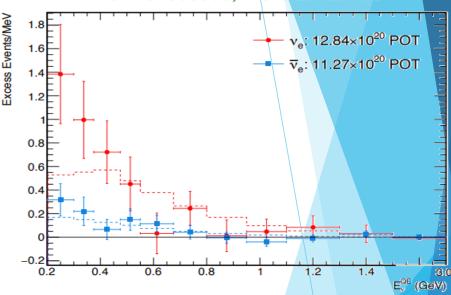
Conclusions:

- Novel explanation of MiniBooNE
- Agreement with all EXP data
- Novel, simple frameworks
- Deep connection to neutrino mass generation mechanism
- A realistic "complete" model below EW scale to explain neutrino mass generation
- Solves the hierarchy of Inverse Seesaw
- Rích phenomenology



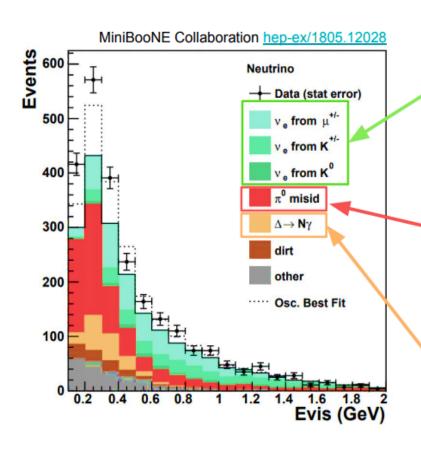


should have appeared



Both excesses, BG subtracted

$$E_{\nu}^{(\text{reconst.})} = \frac{2m_n E_e + m_p^2 - m_n^2 - m_e^2}{2(m_n - E_e + \cos\theta_e \sqrt{E_e^2 - m_e^2})}$$


Measure charged lepton energy/angle

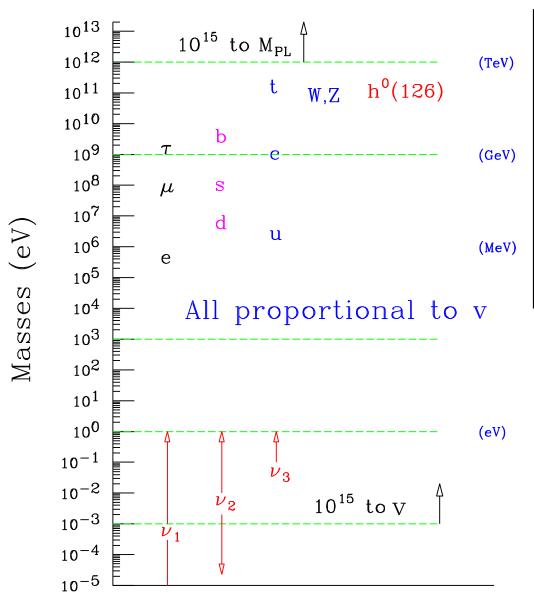
Observed ~ 400 events, PMNS predicts 0

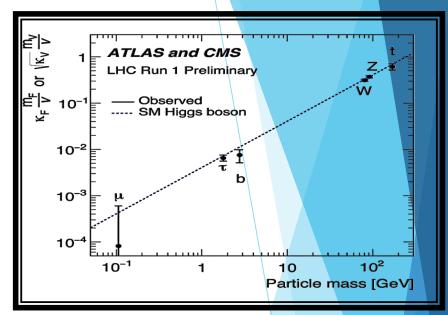
Combined $\nu/\bar{\nu}$ modes: 4.8σ excess

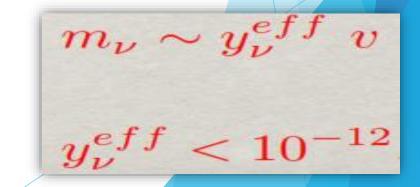
Possible Explanations: Motivated by backgrounds

Intrinsic \mathbf{v}_{e} in the beam? Constrained by measuring \mathbf{v}_{μ} which come from the same π decay as the μ 's that subsequently produce the \mathbf{v}_{e} .

 $\pi^{\rm o}$ misidentification? In which the second shower was missed or incorrectly reconstructed. MiniBooNE measured the largest sample of NC $\pi^{\rm o}$ events ever collected and used this is constrain the exact rate of $\pi^{\rm o}$'s for the CCQE analysis.

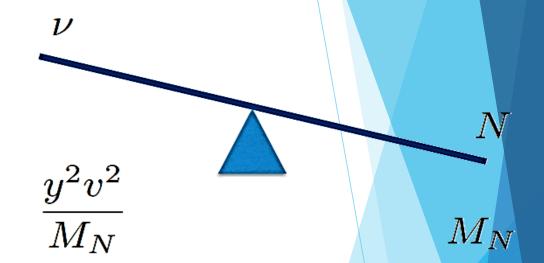

Radiative Δ **decay**? This has never been observed in the neutrino sector. MiniBooNE bound it using their NC π^{o} measurements which agrees well with best theoretical calculations. The biggest channel of interest to MicroBooNE's photon LEE analysis.


* Explanation of MiniBooNE's low energy excess A LIGHT DARK SECTOR - THE PRESCRIPTION


- How low-energy does the subleading electron have to be in an e[†]e⁻ pair in order for an "Asymmetric" pair to look like a single ring?
 E_{True} < 30 MeV
- How small an opening angle does the e^+e^- pair have to have before it is "Overlapping" sufficiently to look like a single ring? $\theta_{SEP} < 5^{\circ}$
- When forcing a two-ring fit to an event, the associated invariant mass should be sufficiently non- π^0 like: $m_{\gamma\gamma}$ < 80 MeV

Neutrino Mass

New physics beyond SM



*Standard/Type I Seesaw

$$yNH\ell + M_NNN$$

$$\frac{y^2\ell H\ell H}{M_N}$$

$$m_
u \sim rac{y^2 v^2}{M_N}$$

$$m_{\nu} \sim 0.1 \mathrm{eV}$$

$$y \sim 0.1$$

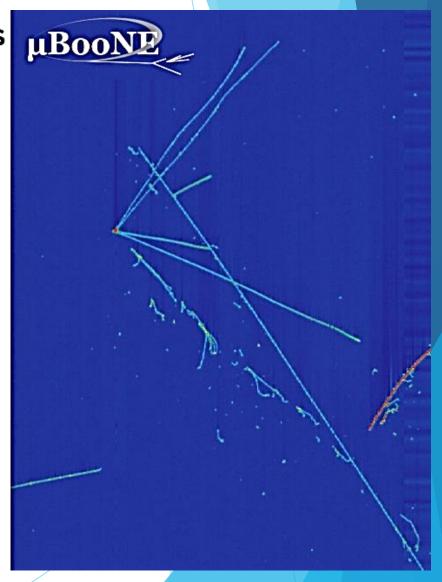
$$m_{\nu} \sim 0.1 {\rm eV}$$
 $y \sim 0.1$ $M_N \sim 10^{12} {\rm GeV}$

Lepton number is broken at very high scale M

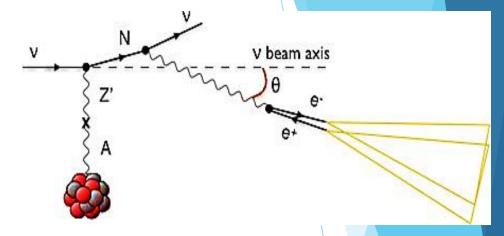

Phenomenology on other neutrino experiment

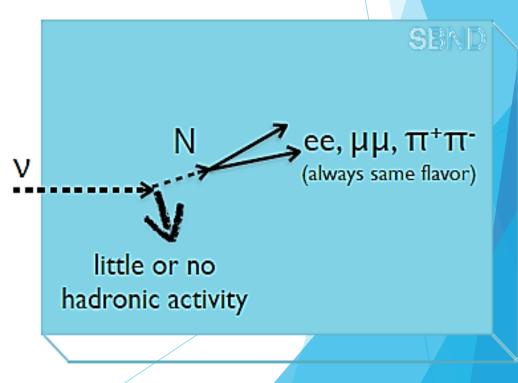
U(1)' models in Future and Current LArTPCs

This class of models has has incredibly **rich phenomenology** at LArTPCs such as **MicroBooNE**, **SBND** or **the DUNE near detector**:


LArTPCs have the distinct advantage that one can tell photons and electron showers apart via two methods:

Directly look for the conversion gap




 Use Calorimetric measurements to see rate of energy deposition (dE/dx). Photons that pair convert to e⁺e⁻ deposit x2 as much energy.

What happens at the SBN program?

- ✓ No baseline dependence
- ✓ Almost no hadronic activity to tag interaction vertex
- ✓ Decays to collimated e⁺e⁻ pairs
- ✓ More events due to coherence:
- ✓ ₆C vs ₁₈Ar ~ 3 times more events for same exposure
- ✓ Hard to probe !!!

Severe Constraints on New Physics Explanations of the MiniBooNE Excess

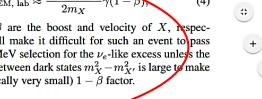
Johnathon R. Jordan,^{1,*} Yonatan Kahn,^{2,3,4,†} Gordan Krnjaic,^{5,‡} Matthew Moschella,^{2,§} and Joshua Spitz^{1,¶}

¹University of Michigan, Ann Arbor, MI ²Princeton University, Princeton, NJ

³Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL USA ⁴University of Illinois Urbana-Champaign, Urbana, IL USA ⁵Fermi National Accelerator Laboratory, Batavia, IL

1810.07185.pdf $m_X < 30$ MeV. As described above, the reconstructed track angle is weighted by the track energies; by momentum conservation, this sum is simply the original X 4-vector, which must satisfy $\cos \theta_e > 0.9999$ in order for X to enter the Mini-BooNE detector, a sphere of fiducial radius 5.75 m located 541 m away from the target. This is highly inconsistent with the $\cos \theta_e$ distribution of the excess (see Fig. 2), which shows significant contributions from $\cos \theta_e < 0.8$. In particular, a model which matches the size of the neutrino mode excess (381.2 events), but predicts all events to have $\cos \theta_e > 0.8$ is incompatible with the observed excess of 150 \pm 31 in this bin (in consideration of statistical errors only; systematics and bin-to-bin correlations are not available, noting that the angular resolution is 3-5° for 100-600 MeV electron energies in ν_e CCOE events [28]).

B. Semi-Visibly Decaying Particles


Since new particles with fully visible decays necessarily give forward-peaked energy depositions in conflict with the angular distribution of the measured excess, we now consider the possibility that a new unstable particle X decay signature

analysis [30]. Thus, the dominant allowed channel is a twobody decay where X decays into a lighter dark-sector state X' and a photon $(X \to X' + \gamma)$. Three- and higher-body decays are also allowed but will be increasingly phase-space suppressed; regardless, we consider decays to X' plus an arbitrary number of electromagnetic tracks. Since the electromagnetic tracks must be well-collimated to contribute to the excess, we will treat this scenario as a quasi-two-body decay, where the electromagnetic energy is considered as a single 4vector $p_{\rm EM}$ with $0 \le p_{\rm EM}^2 \le (30 \, {\rm MeV})^2$.

In the X rest frame, the electromagnetic energy is $E_{\rm EM} =$ $(m_X^2 - m_{X'}^2)/2m_X$. Electromagnetic energy with small invariant mass compared to the beam energy, emitted backwards in the X rest frame, will be boosted to very small lab-frame energies,

$$E_{\rm EM, lab} \approx \frac{m_X^2 - m_{X'}^2}{2m_X} \gamma (1 - \beta), \tag{4}$$

where γ and β are the boost and velocity of X, respectively. This will make it difficult for such an event to pass the $E_e > 140$ MeV selection for the ν_e -like excess unless the mass splitting between dark states $m_X^2 - m_{X'}^2$ is large to make up for the (typically very small) $1 - \beta$ factor.

