

Observation of CP violation in charm: what should we study next ?

Wojciech Krzemień

on behalf of the LHCb collaboration

Workshop on High Energy Physics Phenomenology XVI

IIT Guwahati 06. 12. 2019

Outline

- ➔ Flavour mixing and CP violation (in charm)
- ➔ Experiments
- ➔ CP symmetry violation discovery (CP in decay)
- ➔ Indirect CPV searches
- ➔ Future perspectives
- ➔ Summary & Outlook

W. Krzemień, WHEPP2019, 06. 12. 2019 3

W. Krzemień, WHEPP2019, 06. 12. 2019 4

Predicted by SM:

- \bullet W, Z boson
- gluon
- c and t quarks
- Higgs boson

However several unresolved questions:

- Quark mass hierarchy problem
- Matter-antimatter asymmetry
- Dark matter / dark energy
- Neutrino mass
- ...
- How to incorporate gravity forces

Standard Model of Elementary Particles

Predicted by SM:

- W, Z boson
- gluon
- c and t quarks
- **Higgs boson**

However several unresolved questions:

- Quark mass hierarchy problem
- Matter-antimatter asymmetry
- Dark matter / dark energy
- **Neutrino mass**
- ...
- How to incorporate gravity forces

Standard Model of Elementary Particles

Towards New Physics

Direct searches Indirect searches (precise measurements)

Loops → virtual particles

Towards New Physics

Direct searches Indirect searches (precise measurements)

Flavour physics → sensitivity to particles much heavier than produced directly

In the past:

- charm quark prediction (suppression of FCNC)
- bottom/top quark prediction (observation of CP violation)

Flavour mixing

Neutral flavour mesons mixing

Neutral flavour mesons mixing

Flavour states are not eigenvectors of the full Hamiltonian

$$
\frac{\partial}{\partial t}|\Phi>=H|\Phi>
$$

Neutral flavour mesons mixing

Flavour states are not eigenvectors of the full Hamiltonian

$$
\frac{\partial}{\partial t}|\Phi>=H|\Phi>
$$

Mass eigenstates expressed as a superposition of flavour eigenstates :

$$
|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle
$$
 $|p|^2 + |q|^2 = 1$ *p, q* are complex

Neutral flavour mesons mixing II

Probabilities of mixing: Mixing parameters:

Pr[P0→P⁰]~e-Γ^t (cosh(yΓt) + cos(xΓt))

Pr[P0→P⁰]~e-Γ^t |q/p|² (cosh(yΓt) - cos(xΓt))

$$
\begin{array}{|c|c|}\n\hline\nx = \frac{\Delta m}{\Gamma} & \Delta \Gamma = \Gamma_1 - \Gamma_2 \\
y = \frac{\Delta \Gamma}{2\Gamma} & \Delta m = m_1 - m_2\n\end{array}
$$

Neutral flavour mesons mixing II

CP symmetry

CP violation in Standard Model

The η is the only source of CPV in the SM.

$$
V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0
$$

Over-constrain unitarity triangle apex coordinates for a stringent test of SM:

- CP violation measurements give angles
- CP conserving measurements give sides

CP violation in decay

 $\cdot \theta$ – strong (CP-conserving) phase

 $\cdot \delta$ – weak phase

 $|A|^2$ - $|A|^2$ =0 \rightarrow We cannot observe CP violation

CP violation in decay

CP violation in decay

CP violation in mixing

 $\Gamma(P^0\rightarrow \bar{P^0})\neq \Gamma(\bar{P^0}\rightarrow P^0)$

CP violation in interference between mixing and decays

$$
\Gamma(P^0 \to \bar{P}^0 \to f_{CP}) \neq
$$
\n
$$
\Gamma(\bar{P^0} \to P^0 \to f_{CP})
$$
\nRelative phase $\delta \neq 0$

$$
\lambda_{\rm f} \equiv q/p \; \overline{A}_{\rm f} \; /A_{\rm f} = |q/p \; \overline{A}_{\rm f} \; /A_{\rm f}| \; e^{i\theta} \; e^{i\delta}
$$

W. Krzemień, WHEPP2019, 06. 12. 2019 21

CP violation and its types

 $\hat{C}|\vec{r}, t, q \rangle = e^{i\alpha_1}|\vec{r}, t, -q \rangle$ C – charge conjugation (particle \rightarrow antiparticle) P – parity (spatial reflection) $\hat{P}|\vec{r}, t, q \rangle = e^{i\alpha_2}|- \vec{r}, t, q \rangle$

The CP discrete symmetry is broken if:

$$
\lambda_{\rm f} \equiv q/p \; \overline{A}_{\overline{f}} \; /A_{\rm f} \neq 1
$$

CP violation in decay \Box CP violation in mixing \Box CP violation in

$$
\Gamma(P^0 \to f) \neq \Gamma(\bar{P^0} \to \bar{f})
$$

 $|A_f / A_f| \neq 1$ **f** $|q/p| \neq 1$

$$
\Gamma(P^0\!\!\rightarrow\!\! \bar{P^0})\neq \Gamma(\bar{P^0}\!\!\rightarrow\!\! P^0)
$$

interference between mixing and decay

$$
\Gamma(P^0 \to \bar{P^0} \to f_{CP}) \neq \Gamma(\bar{P^0} \to P^0 \to f_{CP})
$$

arg(q/p Af /A^f)≠ 0

W. Krzemień, WHEPP2019, 06. 12. 2019 22 • Depends on decay mode $\qquad \qquad \bullet$ Not depends on decay mode • only for neutral mesons

General experimental idea

- 1. determine flavour in the initial state
- 2. determine decay time
- 3. determine flavour in the final state
- 4. construct (time-dependent) asymmetry A (A(t))
- 5. extract (mixing/CP) parameters from the fit

➔ In charm mixing and CPV in the up-type quark system (complementarity to s and b)

➔ Perturbative QCD valid for >> 1GeV

long-range contributions dominates – hard to calculate

- ➔ Chiral perturbation theory valid: 0.1 to 1 GeV
- → $m(D^0) \approx 1.864$ GeV

➔ In charm mixing and CPV in the up-type quark system (complementarity to s and b)

long-range contributions dominates – hard to calculate

- Perturbative QCD valid for >> 1GeV
- ➔ Chiral perturbation theory valid: 0.1 to 1 GeV
- → $m(D^0) \approx 1.864$ GeV

Standard Model predictions: tiny effects

- Flavor-Changing Neutral Currents suppressed with respect to s and b (GIM mechanism slightly broken by the b mass (but smaller effect that for t))
- CP violation effects suppressed by the CKM hierarchy
- ➔ **CPV in decays ~ O(10-3)**
- ➔ **in mixing/interference < O(10-4)**

I.I Bigi PoS ICHEP2016 (2016)

L. Silvestrini CHARM2015 theory summary [1510.05797]

M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild JHEP 03(2010) 009 ²⁵

beauty
\n
$$
\beta = \arg \left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*} \right) \sim 23^\circ
$$
\n
$$
\beta_s = \arg \left(-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*} \right) \sim 1^\circ
$$
\n**Precise tests of SM**

charm

$$
\beta_c = \arg\left(-\frac{V_{cd}V_{ud}^*}{V_{cs}V_{us}^*}\right) \sim 0.03^\circ
$$

Search for New Physics effects

since SM effects suppressed

Experimental challenge:

- ➔ High statistics needed
- W. Krzemień, WHEPP2019, 06. 12. 2019 26 ➔ Keep systematics very small (<0.1%)

SM predictions:

- \rightarrow CPV in decay \sim O(10⁻³) **(but different predictions "on the market"):**
	- \sim O(10⁻³) O(10⁻⁴)
	- ➔ **in mixing/interference < O(10-4)**

I.I Bigi PoS ICHEP2016 (2016)

L. Silvestrini CHARM2015 theory summary [1510.05797]

M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild JHEP 03(2010) 009

Experimental status:

- ➔ **Mixing established (> 11 σ effect)**
	- ➔ First evidence Babar, Belle, CDF: PRL 98 (2007) 211802, PRL 98 (2007) 211803, PRL 100 (2008) 121802
	- ➔ LHCb measurements: PRL 113 (2013) 231802, PRD 95 (2017) 052004 PRD 96 (2017) 099907, PRD97 (2018) 031101, **PRL 122, 231802 (2019)**
- ➔ **CPV discovery (in decay) announced this year (5,3 σ effect)**

W. Krzemień, WHEPP2019, 06. 12. 2019 28

W. Krzemień, WHEPP2019, 06. 12. 2019 29

Measurement of the charm eigenstates mass

difference with D0→K s π⁺ π- (Run I 3 fb-1)

- **Consistent with CP symmetry conservation.**
- **.** Combined with world average $x > 0$, more than 3 σ effect

The first evidence of charm eigenstates mass difference

Charming players

Charming players

Sachin Tendulkar

W. Krzemień, WHEPP2019, 06. 12. 2019 32

Charming players LHCb Belle-2

- ➔ **High cross-sections:**
	- ➔ Decays in charged final states **yield of 9 fb-1 @LHCb corresponds to 50 ab-1@Belle-2**
	- $_{\rm \bullet}$ baryon production (e.g. $\Lambda_{_{\rm c}}$)
- ➔ **Good decay-time resolution (~45 fs ~ 0.1 τ(D⁰))**
- ➔ **Busy environment**
	- ➔ non-trivial triggers
	- ➔ non-trivial efficiency corrections

BES-3

- ➔ **Background-free charm**
- ➔ **No time measurement since charm not boosted**
- ➔ **Quantum entangled pairs Ψ(3370)→ DD**
- \rightarrow Complementary measurements to LHCb and Belle-2 $_{33}$
	- e.g. measurement of strong phases

- ➔ **Good reconstruction for neutral particles**
- ➔ **Known initial state:**
	- ➔ Better separation from prompt and secondaries production (from B decays)
- ➔ **Clean environment:**
	- ➔ Milder efficiency variation
	- Easier control of systematics
	- ➔ Absolute asymmetry measurement possible

Large Hadron Collider beauty detector

- \rightarrow Single-arm forward spectrometer covering range $2 < \eta < 5$ (10 < θ < 300 mrad)
- \rightarrow Momentum resolution $\Delta p / p = 0.4 0.6 %$ @ 5 GeV/c to @ 100 GeV/c

(**~8 MeV/c² mass resolution** for two-body charm decay)

 $_{\text{\textbf{+}}}$ Impact parameter resolution: 20 μ m from high p_τ tracks (**decay lifetime ~45 fs ~ 0.1 τ(D^o)**)

W. Krzemień, WHEPP2019, 06. 12. 2019 34

LHCb Integrated Recorded Luminosity in pp. 2010-2018

W. Krzemień, WHEPP2019, 06. 12. 2019 **35 Run I (2011-2012): 3 fb-1 @7 and @8 TeV Run II (2015-2018): 6 fb-1 @13 TeV Total sample collected: 9 fb-1**

LHCb is also charming...

$$
\rightarrow \sigma(pp \rightarrow c\overline{c}) \sim 1419 \,\mu b \,\textcircled{a} \,7 \,\text{TeV} \quad \text{Nucl. Phys. B871(2016) \,1}
$$

 \rightarrow σ(pp → cc) ~ 2840 *μ*b @ 13 TeV **JHEP03(2017) 74**

More than one billion of $D^0 \rightarrow K\pi^+$ **events reconstructed from the collected sample.**
Tagging of initial flavour

Decay time acceptance limits

Prompt charm (Double-tagged) secondary charm

All decay time available

• D^{*+} \rightarrow D^o π ⁺ (largest yield, high purity, $\sigma(t) \approx 0.1 \tau$)

. $\mathbf{B} \rightarrow \mathbf{D}^*$ **·µ X** (1/6 * yield, lower purity, $\sigma(t) \approx 0.3 \tau$)

. $\mathbf{B} \rightarrow \mathbf{D}^* + \mathbf{p}^* \mathbf{X}$ $\mathbf{D}^* + \rightarrow \mathbf{D}^0 \pi^*$ (1/40 * yield, highest purity $\sigma(t) \approx 0.3 \tau$)

History of CP violation discoveries

"Today" = presented 21. 03. 2019 at Moriond conference.

- \rightarrow D⁰ → π + π ⁻ (K+K-)
- \rightarrow Run II, L = 6 fb⁻¹ @13 TeV
- \rightarrow Initial charm tagged with π (µ) sign

$$
Araw(f) = \frac{N(D0 \to f) - N(\overline{D}0 \to f)}{N(D0 \to f) + N(\overline{D}0 \to f)}
$$

- \rightarrow D⁰ → π + π ⁻ (K+K-)
- \rightarrow Run II, L = 6 fb⁻¹ @13 TeV
- \rightarrow Initial charm tagged with π (µ) sign

$$
A_{\text{raw}}(f) = \frac{N(D^0 \to f) - N(\overline{D}^0 \to f)}{N(D^0 \to f) + N(\overline{D}^0 \to f)}
$$

$$
A_{\text{raw}}(f) = \underbrace{A_{CP}(f)} + A_{\text{DM}}(f) + \underbrace{A_{D}(\pi_s^+)}_{\text{Symmetric final state}} + \underbrace{A_{P}(D^{*+})}_{\text{m-tric and K^{*}K^-} \text{inematics the same}}
$$

- \rightarrow D⁰ → π + π ⁻ (K+K-)
- \rightarrow Run II, L = 6 fb⁻¹ @13 TeV
- \rightarrow Initial charm tagged with π (µ) sign

$$
A_{\text{raw}}(f) = \frac{N(D^0 \to f) - N(\overline{D}^0 \to f)}{N(D^0 \to f) + N(\overline{D}^0 \to f)}
$$

$$
A_{\text{raw}}(f) = \underbrace{A_{CP}(f)} + A_{\text{DM}}(f) + \underbrace{A_{D}(\pi_s^+)}_{\text{Symmetric final state}} + \underbrace{A_{P}(D^{*+})}_{\text{m'tr and K'K' if}
$$

kinematics the same

$$
\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi \pi) = A_{CP}(KK) - A_{CP}(\pi \pi)
$$

Data selection

➔ Full reconstruction online (Turbo stream)

Comput. Phys. Commun. 208 (2016) 35

- ➔ Requirements on:
	- ➔ Quality and particle identification information of tracks
	- \rightarrow D₀ vertex quality
	- \rightarrow P_T of tracks and D₀
	- \rightarrow Interaction point of D₀

W. Krzemień, WHEPP2019, 06. 12. 2019 43

Fiducial selection I

➔ Remove regions when assumption about small reconstruction asymmetry is not true – $\pi_{_{\mathrm{s}}}$ (µ) not in acceptance

Fiducial selection I

➔ Remove regions when assumption about small reconstruction asymmetry is not true –

 $\pi_{_{\mathrm{s}}}$ (µ) not in acceptance

Fiducial selection II

➔ Remove regions when assumption about small reconstruction asymmetry is not true – regions of phasespace where only D^{*+} (D^{*}) are kinematically possible.

W. Krzemień, WHEPP2019, 06. 12. 2019 46

A raw measurement (π-tagged)

- \rightarrow Fit m(D^o π) distribution
- ➔ Asymmetry from simultaneous fit between D*+ and D*-

A raw measurement (μ-tagged)

- \rightarrow Fit m(Dº) distribution
- $\,\textcolor{black}{\bullet}\,$ Asymmetry measured from simultaneous fit between $\,$ D $^{\text{o}}$ and D $^{\text{o}}$

W. Krzemień, WHEPP2019, 06. 12. 2019 48

Systematics

π -tagged systematic uncertainty below 10^{-4} !

- $\rightarrow \pi$ -tagged systematica dominated by the fit model
- ➔ μ-tagged systematica dominated by mistag (wrong muon sign)

Robustness checks

W. Krzemień, WHEPP2019, 06. 12. 2019 50

Run II results (6 fb-1)

$$
\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \text{ (stat.)} \pm 0.9 \text{ (syst.)}] \times 10^{-4}
$$

$$
\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \text{ (stat.)} \pm 5 \text{ (syst.)}] \times 10^{-4}
$$

$$
\Delta A_{CP} = (+14 \pm 16 \text{(stat)} \pm 8 \text{ (syst)}) \times 10^{-4} \text{ Phys. Rev. Lett. } 116 \text{ (2016)}
$$
\n
$$
\Delta A_{CP} = (-10 \pm 8 \text{ (stat)} \pm 3 \text{ (syst)}) \times 10^{-4} \text{ Tr-tagged Run } 1 \text{ (3 fb)}^1
$$
\n
$$
\Delta A_{CP} = (-10 \pm 8 \text{ (stat)} \pm 3 \text{ (syst)}) \times 10^{-4} \text{ Tr-tagged Run } 1 \text{ (3 fb)}^1
$$

Combined Run I and Run II (9 fb-1)

Phys. Rev. Lett. 122, 211803 (2019)

$$
\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}
$$

5.3 σ effect

First observation of CP violation in the decays of

charm mesons

W. Krzemień, WHEPP2019, 06. 12. 2019 53

ΔACP interpretation

$$
\Delta A_{CP} \simeq \Delta a_{CP}^{\text{dir}} \left(1 + \frac{\overline{\langle t \rangle}}{\tau(D^0)} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau(D^0)} a_{CP}^{\text{ind}}
$$

reconstructed event decay time

$$
\overline{\langle t \rangle} = \frac{\langle t \rangle_{KK} - \langle t \rangle_{\pi\pi}}{2}
$$

ΔACP interpretation

For the full LHCb data set $(9 fb^{-1})$: $\Delta(t)/\tau(D^0) = 0.115 \pm 0.002$ $\overline{\langle t \rangle}/\tau(D^0) = 1.71 \pm 0.10$

 $y_{CP} = (5.7 \pm 1.5) \times 10^{-3}$ $A_{\Gamma} = (-2.8 \pm 2.8) \times 10^{-4} \simeq -a_{CP}^{\text{ind}}$

JHEP 04 (2012) 129 Phys. Rev. Lett. 122 (2019) 011802 JHEP 04 (2015) 043 Phys. Rev. Lett. 118 (2017) 261803,

$\Delta a_{CP}^{dir} = (-15.4 \pm 2.9) \times 10^{-4}$

 ΔA_{CB} mostly sensitive to direct part

Experiment vs theory (SM interpretations)

→ Some (slight) tension with theoretical SM estimates (10⁻⁴ to 10⁻³) → hard to calculate precisely due to low-energy strong interactions effects

A. Soni [1905.00907] (see also A. Soni's talk in the same session) F. Buccella, A. Paul, P. Santorelli [PRD 99 (2019) 113001], H. Li, C. Lü, F. Yu [1903.10638], H. Cheng, C. Chiang [PRD 100 (2019) 093002] [JHEP 1907 (2019) 020],

Experiment vs theory (BSM)

- Predictions based on the QCD sum rules
	- A. Khodjamirian and A. Petrov [Phys. Lett. B774 (2017) 235]

 $|\Delta A_{CP}| \le (2.0 \pm 0.3) \times 10^{-4}$

QCD sum rules does not work for D physics?

• Light Z'

M. Chala, A. Lenz, A. V. Rusov, J. Scholtz [JHEP 1907 (2019) 161]

• Several scenario with new heavy particles

A. Dery, Y. Nir [1909.11242]

Experiment vs theory (BSM)

- Predictions based on the QCD sum rules
	- A. Khodjamirian and A. Petrov [Phys. Lett. B774 (2017) 235]

 $|\Delta A_{CP}| \le (2.0 \pm 0.3) \times 10^{-4}$

QCD sum rules does not work for D physics?

• Light Z'

M. Chala, A. Lenz, A. V. Rusov, J. Scholtz [JHEP 1907 (2019) 161]

• Several scenario with new heavy particles

A. Dery, Y. Nir [1909.11242]

Further measurements and theoretical input needed to clarify the situation

Further experimental checks

➔ Confirm CP violation effects in other channels

e.g. $D^0 \rightarrow K_s$ $\rm ^0$ K $\rm _s$ ⁰, D⁰ → K_s $\rm ^0$ K $\rm _s$ *

($[PRD 92 (2015) 054036] \rightarrow$ expected enhancement of CPV to 1%)

 $_{\rm \rightarrow}$ Disentangle ΔA $_{_{\rm CP}}$ into A $_{_{\rm CP}}$ (π*π $^{\rm \prime}$) A $_{_{\rm CP}}$ (K*K $^{\rm \prime}$)

From Run1 data $(3$ fb⁻¹):

 $A_{CP}(K^-K^+) = (0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$

[JHEP 1407 (2014) 041] [PLB 767 (2017) 177]

- → Null test of A_{cP}(D⁺ → $\pi^{\text{*}}\pi^{\text{o}}$) < 10⁻⁵ (isospin symmetry)
- ➔ Search for time-dependent CPV (SM predictions: O(10-4))

CPV in mixing

Assuming small values of x and y parameters the ratio $R(t) = WS/RS(t)$:

$$
R(t) \approx R_D + \sqrt{R_D} \ y' \ \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2
$$

 $R_D^+ = |\mathcal{A}_{\overline{f}}/\mathcal{A}_{f}|^2$
 $R_D^- = |\overline{\mathcal{A}}_f/\overline{\mathcal{A}}_{\overline{f}}|^2$

Assuming small values of x and y parameters the ratio $R(t) = WS/RS(t)$:

$$
R(t) \approx R_D + \sqrt{R_D} \ y' \ \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2
$$

 $R_D^+ = |\mathcal{A}_{\overline{f}}/\mathcal{A}_{f}|^2$ $R_D^- = |\overline{\mathcal{A}}_f/\overline{\mathcal{A}}_{\overline{f}}|^2$

If $R^+(t) \neq R^-(t)$ then CP is violated:

 \rightarrow R⁺_D \neq R⁻_D direct CPV

 \rightarrow $x^{\prime+}\neq x^{\prime-}$ or $y^{\prime+}\neq y^{\prime-}$ indirect CPV

- \rightarrow x'= x cos(δ) + y sin(δ)
- \rightarrow y'= y cos(δ) + x sin(δ)

SM expectation for CPV in mixing ~O(10^{-4})

- \rightarrow Run I and II data sample (3 fb⁻¹ pp @7 TeV and @8 TeV and 2 fb⁻¹ $@13$ TeV)
- ➔ Time-dependent asymmetry R(t)
- ➔ Prompt charm
- \rightarrow Fit D $^{\circ}$ mass to extract D $^{\rm o}$ in five time bins
- ➔ Correct for time-dependent detector effects

- \rightarrow Run I and II data sample (3 fb⁻¹ pp @7 TeV and @8 TeV and 2 fb⁻¹ $@13$ TeV)
- ➔ Time-dependent asymmetry R(t)
- ➔ Prompt charm
- \rightarrow Fit D $^{\circ}$ mass to extract D $^{\rm o}$ in five time bins
- ➔ Correct for time-dependent detector effects
- ➔ Three fit scenario considered:
	- ➔ All CPV allowed
	- ➔ No direct CPV allowed
	- ➔ **No CPV allowed**

Consistent with non-CPV hypothesis

Consistent with non-CPV hypothesis

W. Krzemień, WHEPP2019, 2019 biskupiera († 1938).
1905 – John Sterling, Maria Barbara, Amerikaansk politikus († 1908).
1910 – John Sterling, Maria Barbara, Amerikaansk politikus († 1908). **Consistent with non-CPV hypothesis Analogical analysis can be performed with:** D^0 → K⁺π⁺ π⁺ π⁺ D⁰ → K⁺ π⁺ π⁺ π⁺

Indirect CPV

$$
A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)} = A_{CP}^{\text{dir}} + \frac{t}{\tau_D} A_{CP}^{\text{indir}} + \mathcal{O}\left(\left(\frac{t}{\tau_D}\right)^2\right) \simeq A_{CP}^{\text{dir}} - \frac{t}{\tau_D} A_{\Gamma}
$$

$$
f = \pi^+ \pi^- \text{ or } \text{K}^+ \text{K}^-
$$

$$
\text{average } D^0
$$

Neglecting sub-leading amplitudes:

$$
A_{CP}^{dir}=0
$$

AΓ becomes universal

(not depended on decay mode)

If no CPV asymmetry in mixing:

 $A_{\Gamma} = -x \sin \phi \rightarrow |A_{\Gamma}| < |x| \leq 5 \times 10^{-3}$

$$
\phi = \arg((q\overline{A}_f)/(pA_f))
$$

Phys. Rev. Lett. 118 (2017) 261803

Average from Run1 :

 $A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$

Submitted to PRD [1911.01114]

Average from Run1 +Run2 : $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$

Future prospects
LHCb luminosity prospects

2011-2018 LHCb has collected 9 fb $¹$ of data</sup> Run I (2011-2012): 3 fb⁻¹ @7 and @8 TeV Run II (2015-2018): 6 fb⁻¹ @13 TeV

LHCb luminosity prospects

- → In 2021 LHCb will resume the operation to run up to 2030 \rightarrow 50 fb⁻¹ of data expected
- ➔ Belle-2 is taking data from 2019 with the goal to collect 50 ab-1 integrated luminosity at Y(4S) up to 2027

LHCb has proposed the new upgrade for 2030 to reach the instantaneous luminosity of 2 * 1034 cm-2 s-1 and collect at least **300 fb-1** till the end of the program.

Prospects for ΔA_{CP}

 \rightarrow LHCb Upgrade-I phase: $\sigma_{stat}(\Delta A_{CP})$ expected to be **O(10⁻⁴)** \rightarrow LHCb upgrade-II phase: $\sigma_{stat}(\Delta A_{\text{CP}})$ expected to be 3 x 10⁻⁵ **Phys. Rev. Lett. 118 (2017) 261803**

$A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$ **Average from Run1 :**

Submitted to PRD [1911.01114]

Average from Run1 +Run2 : $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$

Phys. Rev. Lett. 118 (2017) 261803

$A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$ **Average from Run1 :**

Submitted to PRD [1911.01114]

Average from Run1 +Run2 : $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$

Prospects for A

LHCb-PUB-2018-009

Aiming at precision: ~**10-5**

compared to the SM bound: A^R \leq **5 *10⁻³**

Summary

- ➔ Mixing and CP violation studies in charm as tests of SM and probes of New Physics effects,
- ➔ LHCb observed CP violation in charm decays with a significance 5.3 standard deviations
- ➔ Several other searches for CP violation are carried in different channels
- ➔ The LHCb run 3 (and further runs) together with input from Belle-2 will provide much larger statistics available

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2×10^{34} cm⁻²

Thank you for your attention

WINET

W. Krzemień, W. Krzemień, W. Krzemień, W. 2019 80. 12. 2019 80. 12. 2019 80. 12. 2019 80. 12. 2019 80. 12. 2019