

Observation of CP violation in charm: what should we study next ?

Wojciech Krzemień

on behalf of the LHCb collaboration

Workshop on High Energy Physics Phenomenology XVI

IIT Guwahati 06. 12. 2019

Outline

- → Flavour mixing and CP violation (in charm)
- Experiments
- , CP symmetry violation discovery (CP in decay)
- Indirect CPV searches
- Future perspectives
- → Summary & Outlook

W. Krzemień, WHEPP2019, 06. 12. 2019

W. Krzemień, WHEPP2019, 06. 12. 2019

Predicted by SM:

- W, Z boson
- gluon
- c and t quarks
- Higgs boson

However several unresolved questions:

- Quark mass hierarchy problem
- Matter-antimatter asymmetry
- Dark matter / dark energy
- Neutrino mass
- ..
- · How to incorporate gravity forces

Standard Model of Elementary Particles

Predicted by SM:

- W, Z boson
- gluon
- c and t quarks
- Higgs boson

However several unresolved questions:

- Quark mass hierarchy problem
- Matter-antimatter asymmetry
- Dark matter / dark energy
- Neutrino mass
- .
- · How to incorporate gravity forces

Standard Model of Elementary Particles

Towards New Physics

Direct searches Indirect searches (precise measurements)

Loops -> virtual particles

Towards New Physics

Direct searches Indirect searches (precise measurements)

Flavour physics → sensitivity to particles much heavier than produced directly

In the past:

- charm quark prediction (suppression of FCNC)
- bottom/top quark prediction (observation of CP violation)

Flavour mixing

Neutral flavour mesons mixing

Neutral flavour mesons mixing

Flavour states are not eigenvectors of the full Hamiltonian

$$\frac{\partial}{\partial t}|\Phi>=H|\Phi>$$

Neutral flavour mesons mixing

Flavour states are not eigenvectors of the full Hamiltonian

$$\frac{\partial}{\partial t}|\Phi>=H|\Phi>$$

Mass eigenstates expressed as a superposition of flavour eigenstates :

$$|D_{1,2}\rangle = p|\mathrm{D}^0
angle \pm q|\overline{\mathrm{D}}^0
angle$$
 $|p|^2 + |q|^2 = 1$ *p, q* are complex

Neutral flavour mesons mixing II

Probabilities of mixing:

 $Pr[P^{0} \rightarrow P^{0}] \sim e^{-\Gamma t} (cosh(y\Gamma t) + cos(x\Gamma t))$

 $Pr[P^{0} \rightarrow \overline{P}^{0}] \sim e^{-\Gamma t} |q/p|^{2} (\cosh(y\Gamma t) - \cos(x\Gamma t))$

Mixing parameters:

$$x = \frac{\Delta m}{\Gamma} \qquad \Delta \Gamma = \Gamma_1 - \Gamma_2$$
$$y = \frac{\Delta \Gamma}{2\Gamma} \qquad \Delta m = m_1 - m_2$$

Neutral flavour mesons mixing II

CP symmetry

CP violation in Standard Model

The η is the only source of CPV in the SM.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Over-constrain unitarity triangle apex coordinates for a stringent test of SM:

- CP violation measurements give angles
- CP conserving measurements give sides

CP violation in decay

• θ – strong (CP-conserving) phase

• δ – weak phase

 $|\overline{A}|^2 - |A|^2 = 0 \rightarrow \text{We cannot observe CP violation}$

CP violation in decay

W. Krzemień, WHEPP2019, 06. 12. 2019

W. Krzemień, WHEPP2019, 06. 12. 2019

$$|\overline{A}_1 + \overline{A}_2|^2 - |A_1 + A_2|^2 = 4 |A_1| |A_2| \sin(\theta_1 - \theta_2) \frac{\sin(\delta_1 - \delta_2)}{\sin(\delta_1 - \delta_2)}$$

CP violation in decay

CP violation in mixing

 $\Gamma(P^0 \to \bar{P^0}) \neq \Gamma(\bar{P^0} \to P^0)$

CP violation in interference between mixing and decays

$$\Gamma(P^{0} \rightarrow \bar{P^{0}} \rightarrow f_{CP}) \neq$$

$$\Gamma(\bar{P^{0}} \rightarrow P^{0} \rightarrow f_{CP})$$

$$\mathbf{I}$$
Relative phase } \delta \neq \mathbf{0}

$$\lambda_{f} \equiv q/p \ \overline{A}_{\overline{f}} / A_{f} = |q/p \ \overline{A}_{\overline{f}} / A_{f}| \ e^{i\theta} \ e^{i\delta}$$

W. Krzemień, WHEPP2019, 06. 12. 2019

CP violation and its types

C – charge conjugation (particle \rightarrow antiparticle) $\hat{C}|\vec{r}, t, q \rangle = e^{i\alpha_1}|\vec{r}, t, -q \rangle$ P – parity (spatial reflection) $\hat{P}|\vec{r}, t, q \rangle = e^{i\alpha_2}|-\vec{r}, t, q \rangle$

The CP discrete symmetry is broken if:

$$\lambda_{f} \equiv q/p \ \overline{A}_{\overline{f}} / A_{f} \neq 1$$

CP violation in decay

$$\Gamma(P^0 \to f) \neq \Gamma(\bar{P^0} \to \bar{f})$$

 $\overline{|A_{f}|} \neq 1$

Depends on decay mode

CP violation in mixing

$$\Gamma(P^0 \rightarrow \bar{P^0}) \neq \Gamma(\bar{P^0} \rightarrow P^0)$$

|q/p**|** ≠ 1

CP violation in interference between mixing and decay

$$\Gamma(P^0 \rightarrow \bar{P^0} \rightarrow f_{CP}) \neq$$

$$\Gamma(\bar{P^0} \rightarrow P^0 \rightarrow f_{CP})$$

arg(q/p Ā_f /A_f)≠ 0

Not depends on decay mode
 only for neutral mesons
 W. Krzemień, WHEPP2019, 06. 12. 2019

General experimental idea

- 1. determine flavour in the initial state
- 2. determine decay time
- 3. determine flavour in the final state
- 4. construct (time-dependent) asymmetry A (A(t))
- 5. extract (mixing/CP) parameters from the fit

→ In charm mixing and CPV in the up-type quark system (complementarity to s and b)

Perturbative QCD valid for >> 1GeV

long-range contributions dominates - hard to calculate

- → Chiral perturbation theory valid: 0.1 to 1 GeV
- → m(D^o) ≈ 1.864 GeV

→ In charm mixing and CPV in the up-type quark system (complementarity to s and b)

long-range contributions dominates – hard to calculate

- Perturbative QCD valid for >> 1GeV
- → Chiral perturbation theory valid: 0.1 to 1 GeV
- → m(D⁰) ≈ 1.864 GeV

Standard Model predictions: tiny effects

- Flavor-Changing Neutral Currents suppressed with respect to s and b (GIM mechanism slightly broken by the b mass (but smaller effect that for t))
- CP violation effects suppressed by the CKM hierarchy
- → CPV in decays ~ O(10⁻³)
- in mixing/interference < O(10⁻⁴)

I.I Bigi PoS ICHEP2016 (2016)

L. Silvestrini CHARM2015 theory summary [1510.05797]

M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild JHEP 03(2010) 009

beauty

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \sim 23^{\circ}$$
Precise tests of SM

$$\beta_s = \arg\left(-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*}\right) \sim 1^{\circ}$$

charm

$$\beta_c = \arg\left(-\frac{V_{cd}V_{ud}^*}{V_{cs}V_{us}^*}\right) \sim 0.03^\circ$$

Search for New Physics effects since SM effects suppressed

Experimental challenge:

- → High statistics needed
- → Keep systematics very small (<0.1%) W. Krzemień, WHEPP2019, 06. 12. 2019

SM predictions:

- → CPV in decay ~ O(10⁻³)
 (but different predictions "on the market"):
 - ~ O(10⁻³) O(10⁻⁴)
 - → in mixing/interference < O(10⁻⁴)

I.I Bigi PoS ICHEP2016 (2016)

L. Silvestrini CHARM2015 theory summary [1510.05797]

M. Bobrowski, A. Lenz, J. Riedl, J. Rohrwild JHEP 03(2010) 009

Experimental status:

- Mixing established (> 11 σ effect)
 - First evidence Babar, Belle, CDF: PRL 98 (2007) 211802, PRL 98 (2007) 211803, PRL 100 (2008) 121802
 - → LHCb measurements: PRL 113 (2013) 231802, PRD 95 (2017) 052004 PRD 96 (2017) 099907, PRD97 (2018) 031101, PRL 122, 231802 (2019)
- \rightarrow CPV discovery (in decay) announced this year (5,3 σ effect)

W. Krzemień, WHEPP2019, 06. 12. 2019

W. Krzemień, WHEPP2019, 06. 12. 2019

Measurement of the charm eigenstates mass

difference with $D^0 \rightarrow K_s \pi^+ \pi^-$ (Run I 3 fb⁻¹)

- . Consistent with CP symmetry conservation.
- Combined with world average x > 0, more than 3 σ effect

The first evidence of charm eigenstates mass difference

Charming players

Charming players

Sachin Tendulkar

W. Krzemień, WHEPP2019, 06. 12. 2019

Charming players Belle-2

LHCb

- → High cross-sections:
 - → Decays in charged final states yield of 9 fb⁻¹
 @LHCb corresponds to 50 ab⁻¹@Belle-2
 - \mathbf{J} baryon production (e.g. Λ_{c})
- Good decay-time resolution (~45 fs ~ 0.1 τ(D⁰))
- Busy environment
 - → non-trivial triggers
 - non-trivial efficiency corrections

BES-3

- Background-free charm
- No time measurement since charm not boosted
- → Quantum entangled pairs $\Psi(3370) \rightarrow D\overline{D}$
- Complementary measurements to LHCb and Belle-2
 - e.g. measurement of strong phases

- Good reconstruction for neutral particles
- Known initial state:
 - Better separation from prompt and secondaries production (from B decays)
- Clean environment:
 - → Milder efficiency variation
 - → Easier control of systematics
 - → Absolute asymmetry measurement possible

Large Hadron Collider beauty detector

- Single-arm forward spectrometer covering range 2 < η < 5 (10 < θ <300 mrad)
- Momentum resolution $\Delta p/p = 0.4 0.6 \%$ @ 5 GeV/c to @ 100 GeV/c

(~8 MeV/c² mass resolution for two-body charm decay)

, Impact parameter resolution: 20 μ m from high p_T tracks (decay lifetime ~45 fs ~ 0.1 τ (D⁰))

W. Krzemień, WHEPP2019, 06. 12. 2019

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Run I (2011-2012): 3 fb⁻¹ @7 and @8 TeV Run II (2015-2018): 6 fb⁻¹ @13 TeV Total sample collected: 9 fb⁻¹ W. Krzemień, WHEPP2019, 06. 12. 2019

LHCb is also charming...

- → σ (pp → cc) ~ 1419 µb @ 7 TeV Nucl.Phys.B871(2016) 1
- → σ (pp → cc) ~ 2840 µb @ 13 TeV **JHEP03(2017) 74**

More than one billion of $D^0 \rightarrow K^-\pi^+$ events reconstructed from the collected sample.
Tagging of initial flavour

Decay time acceptance limits

(Double-tagged) secondary charm

All decay time available

- $D^{*+} \rightarrow D^{0}\pi^{+}$ (largest yield, high purity, $\sigma(t) \approx 0.1 \tau$)
- $\mathbf{\overline{B}} \rightarrow \mathbf{D}^{*+} \mathbf{\mu}^{-} \mathbf{X}$ (1/6 * yield, lower purity, $\sigma(t) \approx 0.3 \tau$)
- $\overline{\mathbf{B}} \rightarrow \mathbf{D}^{*+} \mu^{-} \mathbf{X} \quad \mathbf{D}^{*+} \rightarrow \mathbf{D}^{0} \pi^{+}$ (1/40 * yield, highest purity $\sigma(t) \approx 0.3 \tau$)

Observation of CP violation in charm decays

History of CP violation discoveries

"Today" = presented 21. 03. 2019 at Moriond conference.

Observation of CP violation in charm decays

- → $D^0 \rightarrow \pi^+\pi^-$ (K⁺K⁻)
- → Run II, L = 6 fb⁻¹ @13 TeV
- $_{\textrm{J}}$ Initial charm tagged with π (µ) sign

$$A_{\rm raw}(f) = \frac{N(D^0 \to f) - N(\overline{D}{}^0 \to f)}{N(D^0 \to f) + N(\overline{D}{}^0 \to f)}$$

Observation of CP violation in charm decays

- → $D^0 \rightarrow \pi^+\pi^-$ (K⁺K⁻)
- → Run II, L = 6 fb⁻¹ @13 TeV
- $_{\clubsuit}$ Initial charm tagged with π (µ) sign

$$A_{\text{raw}}(f) = \frac{N(D^{0} \to f) - N(D^{0} \to f)}{N(D^{0} \to f) + N(\overline{D}^{0} \to f)}$$

$$A_{\text{raw}}(f) = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{P}(D^{*+})$$
Symmetric final state
Should be same for
$$\pi^{+}\pi^{-} \text{ and } \mathsf{K}^{+}\mathsf{K}^{-} \text{ if }$$
kinematics the same

Observation of CP violation in charm decays

- → $D^0 \rightarrow \pi^+\pi^-$ (K⁺K⁻)
- → Run II, L = 6 fb⁻¹ @13 TeV
- $_{\clubsuit}$ Initial charm tagged with π (µ) sign

$$A_{\text{raw}}(f) = \frac{N(D^{0} \to f) - N(D^{0} \to f)}{N(D^{0} \to f) + N(\overline{D}^{0} \to f)}$$

$$A_{\text{raw}}(f) = A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{P}(D^{*+})$$
Symmetric final state
Symmetric final state
Should be same for
$$\pi^{+}\pi^{-} \text{ and } \mathsf{K}^{+}\mathsf{K}^{-} \text{ if }$$
kinematics the same

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

Data selection

Full reconstruction online (Turbo stream)

Comput. Phys. Commun. 208 (2016) 35

- → Requirements on:
 - → Quality and particle identification information of tracks
 - $, D_0$ vertex quality
 - , P_{T} of tracks and D_{0}
 - , Interaction point of D_0

Fiducial selection I

→ Remove regions when assumption about small reconstruction asymmetry is not true – $\pi_s(\mu)$ not in acceptance

Fiducial selection I

 \rightarrow Remove regions when assumption about small reconstruction asymmetry is not true –

 $\pi_{s}(\mu)$ not in acceptance

Fiducial selection II

→ Remove regions when assumption about small reconstruction asymmetry is not true – regions of phasespace where only D^{*+} (D^{*-}) are kinematically possible.

W. Krzemień, WHEPP2019, 06. 12. 2019

A_{raw} measurement (π-tagged)

- Fit m(D⁰ π) distribution
- → Asymmetry from simultaneous fit between D*+ and D*-

W. Krzemień, WHEPP2019, 06. 12. 2019

A_{raw} measurement (μ-tagged)

- → Fit m(D⁰) distribution
- , Asymmetry measured from simultaneous fit between $\ D^{\scriptscriptstyle 0}$ and $\overline{D^{\scriptscriptstyle \overline{0}}}$

W. Krzemień, WHEPP2019, 06. 12. 2019

Systematics

Source	π -tagged [10 ⁻⁴]	μ -tagged [10 ⁻⁴]
Fit model	0.6	2
Mistag		4
Weighting	0.2	1
Secondary decays	0.3	
B^0 fraction	_	1
B reco. efficiency	_	2
Peaking background	0.5	_
Total	0.9	5

π -tagged systematic uncertainty below 10^{-4} !

- \rightarrow π -tagged systematica dominated by the fit model
- \rightarrow µ-tagged systematica dominated by mistag (wrong muon sign)

Robustness checks

W. Krzemień, WHEPP2019, 06. 12. 2019

Run II results (6 fb⁻¹)

$$\Delta A_{CP}^{\pi-\text{tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4}$$
$$\Delta A_{CP}^{\mu-\text{tagged}} = [-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})] \times 10^{-4}$$

$$\Delta A_{CP} = (+14 \pm 16(\text{stat}) \pm 8(\text{syst})) \times 10^{-4} \qquad \mu\text{-tagged Run 1 (3 fb^{-1})}$$

$$Phys. Rev. Lett. 116 (2016)$$

$$\pi\text{-tagged Run 1 (3 fb^{-1})}$$

$$\pi\text{-tagged Run 1 (3 fb^{-1})}$$

$$JHEP 07 041 (2014)$$

Combined Run I and Run II (9 fb⁻¹)

Phys. Rev. Lett. 122, 211803 (2019)

 5.3σ effect

First observation of CP violation in the decays of

charm mesons

W. Krzemień, WHEPP2019, 06. 12. 2019

ΔA_{CP} interpretation

$$\Delta A_{CP} \simeq \Delta a_{CP}^{\text{dir}} \left(1 + \frac{\overline{\langle t \rangle}}{\tau(D^0)} y_{CP} \right) + \frac{\Delta \langle t \rangle}{\tau(D^0)} a_{CP}^{\text{ind}}$$
reconstructed event decay time
$$\overline{\langle t \rangle} = \frac{\langle t \rangle_{KK} - \langle t \rangle_{\pi\pi}}{2}$$

ΔA_{CP} interpretation

For the full LHCb data set (9 fb⁻¹): $\Delta \langle t \rangle / \tau (D^0) = 0.115 \pm 0.002$ $\overline{\langle t \rangle} / \tau (D^0) = 1.71 \pm 0.10$

 $y_{CP} = (5.7 \pm 1.5) \times 10^{-3}$ $A_{\Gamma} = (-2.8 \pm 2.8) \times 10^{-4} \simeq -a_{CP}^{\text{ind}}$ JHEP 04 (2012) 129 Phys. Rev. Lett. 122 (2019) 011802 JHEP 04 (2015) 043

Phys. Rev. Lett. 118 (2017) 261803

$\Delta a_{CP}^{dir} = (-15.4 \pm 2.9) \times 10^{-4}$

 ΔA_{CP} mostly sensitive to direct part

Experiment vs theory (SM interpretations)

→ Some (slight) tension with theoretical SM estimates (10⁻⁴ to 10⁻³) → hard to calculate precisely due to low-energy strong interactions effects

A. Soni [1905.00907] (see also A. Soni's talk in the same session)
F. Buccella, A. Paul, P. Santorelli [PRD 99 (2019) 113001],
H. Li, C. Lü, F. Yu [1903.10638],
H. Cheng, C. Chiang [PRD 100 (2019) 093002]
[JHEP 1907 (2019) 020],

Experiment vs theory (BSM)

- Predictions based on the QCD sum rules
 - A. Khodjamirian and A. Petrov [Phys. Lett. B774 (2017) 235]

 $|\Delta A_{CP}| \le (2.0 \pm 0.3) \times 10^{-4}$

QCD sum rules does not work for D physics?

• Light Z'

M. Chala, A. Lenz, A. V. Rusov, J. Scholtz [JHEP 1907 (2019) 161]

• Several scenario with new heavy particles

A. Dery, Y. Nir [1909.11242]

Experiment vs theory (BSM)

- Predictions based on the QCD sum rules
 - A. Khodjamirian and A. Petrov [Phys. Lett. B774 (2017) 235]

 $|\Delta A_{CP}| \le (2.0 \pm 0.3) \times 10^{-4}$

QCD sum rules does not work for D physics?

• Light Z'

M. Chala, A. Lenz, A. V. Rusov, J. Scholtz [JHEP 1907 (2019) 161]

• Several scenario with new heavy particles

A. Dery, Y. Nir [1909.11242]

Further measurements and theoretical input needed to clarify the situation

Further experimental checks

→ Confirm CP violation effects in other channels

e.g. $D^0 \rightarrow K_s^0 K_s^0$, $D^0 \rightarrow K_s^0 K_s^*$

([PRD 92 (2015) 054036] \rightarrow expected enhancement of CPV to 1%)

, Disentangle ΔA_{CP} into $A_{CP}(\pi^+\pi^-) A_{CP}(K^+K^-)$

From Run1 data (3 fb⁻¹):

 $A_{CP}(K^-K^+) = (0.04 \pm 0.12 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$

[JHEP 1407 (2014) 041] [PLB 767 (2017) 177]

- , Null test of $A_{CP}(D^+ \rightarrow \pi^+\pi^0) < 10^{-5}$ (isospin symmetry)
- → Search for time-dependent CPV (SM predictions: O(10⁻⁴))

CPV in mixing

Assuming small values of x and y parameters the ratio R(t) = WS/RS(t):

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

 $R_D^+ = |\mathcal{A}_{\overline{f}}/\mathcal{A}_f|^2$ $R_D^- = |\overline{\mathcal{A}}_f/\overline{\mathcal{A}}_{\overline{f}}|^2$

Assuming small values of x and y parameters the ratio R(t) = WS/RS(t):

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

 $R_D^+ = |\mathcal{A}_{\overline{f}}/\mathcal{A}_f|^2$ $R_D^- = |\overline{\mathcal{A}}_f/\overline{\mathcal{A}}_{\overline{f}}|^2$

If $R^+(t) \neq R^-(t)$ then CP is violated:

 \Rightarrow R⁺_D \neq R⁻_D direct CPV

, $x'^+ \neq x'^-$ or $y'^+ \neq y'^-$ indirect CPV

- → $x' = x \cos(\delta) + y \sin(\delta)$
- → $y' = y \cos(\delta) + x \sin(\delta)$

SM expectation for CPV in mixing $\sim O(10^{-4})$

Mixing and CP studies in $\ D^0 \to K^+\pi^-$ decays

- → Run I and II data sample (3 fb⁻¹ pp @7 TeV and @8 TeV and 2 fb⁻¹@13 TeV)
- → Time-dependent asymmetry R(t)
- → Prompt charm
- → Fit D^{*} mass to extract D⁰ in five time bins
- Correct for time-dependent detector effects

Phys. Rev. D 97, 031101 (2018)

Mixing and CP studies in $~D^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ decays

- → Run I and II data sample (3 fb⁻¹ pp @7 TeV and @8 TeV and 2 fb⁻¹@13 TeV)
- → Time-dependent asymmetry R(t)
- → Prompt charm
- → Fit D^{*} mass to extract D⁰ in five time bins
- Correct for time-dependent detector effects
- Three fit scenario considered:
 - → All CPV allowed
 - → No direct CPV allowed
 - No CPV allowed

Consistent with non-CPV hypothesis

Mixing and CP studies in $~D^0 \to K^+\pi^-$ decays

Consistent with non-CPV hypothesis

Mixing and CP studies in $~D^0 \to K^+\pi^-$ decays

Analogical analysis can be performed with: $D^0 \rightarrow K^+\pi^- \pi^+\pi^- D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Indirect CPV

$$A_{CP}(t) = \frac{\Gamma(D^{0}(t) \to f) - \Gamma(\overline{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\overline{D}^{0}(t) \to f)} = A_{CP}^{\text{dir}} + \frac{t}{\tau_{D}} A_{CP}^{\text{indir}} + \mathcal{O}\left(\left(\frac{t}{\tau_{D}}\right)^{2}\right) \simeq A_{CP}^{\text{dir}} - \frac{t}{\tau_{D}} A_{\Gamma}$$

$$f = \pi^{+}\pi^{-} \text{ or } \mathbf{K}^{+}\mathbf{K}^{-}$$

$$average \ \mathbf{D}^{0}$$

$$lifetime$$

Neglecting sub-leading amplitudes:

$$A_{CP}^{dir} = 0$$

$$A_r$$
 becomes universal

(not depended on decay mode)

If no CPV asymmetry in mixing:

 $A_{\Gamma} = -x \sin \phi \rightarrow |A_{\Gamma}| < |x| \lesssim 5 \times 10^{-3}$

$$\phi = \arg\left((q\overline{A}_f)/(pA_f)\right)$$

Phys. Rev. Lett. 118 (2017) 261803

Average from Run1 : $A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$

Submitted to PRD [1911.01114]

Average from Run1 + Run2 : $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$

Future prospects
LHCb luminosity prospects

2011-2018 LHCb has collected 9 fb⁻¹ of data Run I (2011-2012): 3 fb⁻¹ @7 and @8 TeV Run II (2015-2018): 6 fb⁻¹ @13 TeV

LHCb luminosity prospects

- → In 2021 LHCb will resume the operation to run up to 2030 \rightarrow 50 fb⁻¹ of data expected
- Belle-2 is taking data from 2019 with the goal to collect 50 ab⁻¹ integrated luminosity at Y(4S) up to 2027

LHCb has proposed the new upgrade for 2030 to reach the instantaneous luminosity of 2 * 10³⁴ cm⁻² s⁻¹ and collect at least **300 fb⁻¹** till the end of the program.

Prospects for ΔA_{CP}

Sample (\mathcal{L})	Tag	Yield	Yield	$\sigma(\Delta A_{CP})$	$\sigma(A_{CP}(hh))$
		$D^0 \rightarrow K^- K^+$	$D^0 \rightarrow \pi^- \pi^+$	[%]	[%]
Run 1–2 (9 fb ^{-1})	Prompt	$52\mathrm{M}$	$17\mathrm{M}$	0.03	0.07
Run 1–3 (23 fb ⁻¹)	Prompt	280M	94M	0.013	0.03
Run 1–4 (50 fb ⁻¹)	Prompt	$1\mathrm{G}$	$305 \mathrm{M}$	0.01	0.03
Run 1–5 (300 fb ⁻¹)	Prompt	4.9G	1.6G	0.003	0.007

→ LHCb Upgrade-I phase: $\sigma_{stat}(\Delta A_{CP})$ expected to be **O(10**⁻⁴) → LHCb upgrade-II phase: $\sigma_{stat}(\Delta A_{CP})$ expected to be **3 x 10**⁻⁵ Phys. Rev. Lett. 118 (2017) 261803

Average from Run1 : $A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$

Submitted to PRD [1911.01114]

Average from Run1 + Run2 : $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$

Phys. Rev. Lett. 118 (2017) 261803

Average from Run1 : $A_{\Gamma} = (-0.13 \pm 0.28 \pm 0.10) \times 10^{-3}$

Submitted to PRD [1911.01114]

Average from Run1 + Run2 : $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$

Prospects for A_r

LHCb-PUB-2018-009

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_{\Gamma})$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$
Run 1–2 (9 fb ⁻¹)	Prompt	$60\mathrm{M}$	0.013%	18M	0.024%
Run 1–3 (23 fb ⁻¹)	Prompt	310M	0.0056%	92M	0.0104~%
Run 1–4 (50 fb ⁻¹)	Prompt	793M	0.0035%	236M	0.0065~%
Run 1–5 (300 fb ⁻¹)	Prompt	$5.3\mathrm{G}$	0.0014%	$1.6\mathrm{G}$	0.0025~%

Aiming at precision: ~**10**⁻⁵

compared to the SM bound: $A_{r} < 5 * 10^{-3}$

Summary

- Mixing and CP violation studies in charm as tests of SM and probes of New Physics effects,
- → LHCb observed CP violation in charm decays with a significance 5.3 standard deviations
- \rightarrow Several other searches for CP violation are carried in different channels
- The LHCb run 3 (and further runs) together with input from Belle-2 will provide much larger statistics available

	LHC era			HL-LHC era	
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
ATLAS, CMS	25 fb⁻¹	100 fb ⁻¹	300 fb⁻¹	\rightarrow	3000 fb ⁻¹
LHCb	3 fb ^{−1}	<mark>6</mark> fb⁻¹	25 fb⁻¹	50 fb⁻¹	*300 fb ⁻¹

* assumes a future LHCb upgrade to raise the instantaneous luminosity to 2×10^{34} cm⁻²

Thank you for your attention