Lattice QCD input to CKM matrix elements

Most of the information are taken from:

- 1. FLAG Review 2019 (Aoki et al, 1902.08191)
- 2. Lattice 2019 talk by S. Gottlieb

Weak interaction and Lattice QCD

- Lattice QCD is needed
	- \triangleright to interpret flavour physics data
	- \triangleright to extract the values of CKM matrix elements
- Most extensions of the Standard Model contain new CP- violating phases, new quark flavour-changing interactions → New Physics effects expected in the quark flavour sector
- \pm To describe weak interaction involving quarks, one must include effects of confining quarks into hadrons.
- Typically most non-perturbative QCD effects get absorbed into hadronic matrix elements such as decay constants, form factors and bag parameters
- So far, Lattice QCD is the best tool to calculate non-perturbative QCD effects with **controlled systematics.**

Using LQCD we can calculate two, three and four point functions with control systematics

CKM Matrix

 \triangleright CKM matrix is unitary

- Each row and column is a complex unit vector
- Each row (column) is orthogonal to other rows (columns)
- \triangleright Violation of unitarity is evidence of new-physics
- \triangleright If two different processes produce two different values of the matrix elements, that could also be evidence for new physics

Some relevant processes corresponding to CKM matrix elements:

$$
\begin{array}{cccc}\n\mathbf{V}_{\mathbf{ud}} & \mathbf{V}_{\mathbf{us}} & \mathbf{V}_{\mathbf{ub}} \\
\pi \rightarrow \ell \nu & K \rvert \rightarrow \ell \nu & B \rightarrow \ell \nu \\
K \rightarrow \pi \ell \nu & B \rightarrow \pi \ell \nu \\
\mathbf{V}_{\mathbf{cd}} & \mathbf{V}_{\mathbf{cs}} & \mathbf{V}_{\mathbf{cb}} \\
D \rightarrow \ell \nu & D_s \rightarrow \ell \nu & B \rightarrow D \ell \nu \\
D \rightarrow \pi \ell \nu & D \rightarrow K \ell \nu & B \rightarrow D^* \ell \nu \\
\mathbf{V}_{\mathbf{td}} & \mathbf{V}_{\mathbf{ts}} & \mathbf{V}_{\mathbf{tb}} \\
\langle B_d | \bar{B}_d \rangle & \langle B_s | \bar{B}_s \rangle \\
B \rightarrow \pi \ell \ell & B \rightarrow K \ell \ell\n\end{array}
$$

CKM matrix elements and lattice calculations

$$
\left(\begin{array}{cccc} \mathbf{V}_{\mathbf{ud}} & \mathbf{V}_{\mathbf{us}} & \mathbf{V}_{\mathbf{ub}} \\ \pi \rightarrow \ell \nu & K \rvert \rightarrow \ell \nu & B \rightarrow \ell \nu \\ K \rightarrow \pi \ell \nu & B \rightarrow \pi \ell \nu \\ \mathbf{V}_{\mathbf{cd}} & \mathbf{V}_{\mathbf{cs}} & \mathbf{V}_{\mathbf{cb}} \\ D \rightarrow \ell \nu & D_s \rightarrow \ell \nu & B \rightarrow D \ell \nu \\ D \rightarrow \pi \ell \nu & D \rightarrow K \ell \nu & B \rightarrow D^* \ell \nu \\ \mathbf{V}_{\mathbf{td}} & \mathbf{V}_{\mathbf{ts}} & \mathbf{V}_{\mathbf{tb}} \\ \langle B_d | \bar{B}_d \rangle & \langle B_s | \bar{B}_s \rangle \\ B \rightarrow \pi \ell \ell & B \rightarrow K \ell \ell \end{array}\right)
$$

"Gold plated" processes on the lattice \rightarrow CKM matrix elements

- **One hadron in the initial state and zero or one hadron in the final state**
- **Stable hadrons (that is narrow or far from threshold easier to study on lattice)**
- **Chiral extrapolation is controllable**

First row: Light quarks

Leptonic	V_{ud}	V_{us}	V_{ub}
$\pi \rightarrow \ell \nu$	$\underline{K} \rightarrow \ell \nu$	$B \rightarrow \ell \nu$	
V_{cd}	V_{cs}	V_{cb}	
$D \rightarrow \ell \nu$	$D_s \rightarrow \ell \nu$	$B \rightarrow D \ell \nu$	
$D \rightarrow \ell \nu$	$D_s \rightarrow \ell \nu$	$B \rightarrow D \ell \nu$	
$D \rightarrow \pi \ell \nu$	$D \rightarrow K \ell \nu$	$B \rightarrow D^* \ell \nu$	
V_{td}	V_{ts}	V_{tb}	
$\langle B_d \bar{B}_d \rangle$	$\langle B_s \bar{B}_s \rangle$		
$B \rightarrow \pi \ell \ell$	$B \rightarrow K \ell \ell$		

Weak matrix elements

WHEPP 2019

Decay constants from Lattice QCD

$$
\label{eq:gamma} \begin{aligned} \ln \textsf{SM}:\\ \Gamma(H\to\ell\nu)=\frac{M_H}{8\pi}f_H^2\left|G_FV_{Qq}^*m_\ell\right|^2\left(1-\frac{m_\ell^2}{M_H^2}\right)^2, \end{aligned}
$$

Pseudoscalar to vacuum matrix element of the axial current \longrightarrow pseudoscalar decay constant

$$
\langle 0|\mathcal{A}^{\mu}|H(p)\rangle = ip^{\mu}f_H,
$$

$$
\langle 0|\mathcal{A}^{\mu}|H(p)\rangle (M_H)^{-1/2} = i(p^{\mu}/M_H)\phi_H
$$

$$
f_H = \phi_H/\sqrt{M_H}
$$

$$
\begin{array}{|l|} \hline H & {\cal A}^{\mu} & V \\ \hline D & \bar d \gamma^{\mu} \gamma^5 c & V_{cd}^* \\ D_s & \bar s \gamma^{\mu} \gamma^5 c & V_{cs}^* \\ B & \bar b \gamma^{\mu} \gamma^5 u & V_{ub} \\ B_s & \bar b \gamma^{\mu} \gamma^5 s & - \\\hline \end{array}
$$

Renormalization constant (to match with continuum physics) : $Z_{A^{\mu}}A^{\mu} \doteq \mathcal{A}^{\mu} + \mathcal{O}\left(\alpha_s a \Lambda f_i(m_Q a)\right) + \mathcal{O}\left(a^2 \Lambda^2 f_i(m_Q a)\right)$

Leptonic decay constants

Need to calculate two point correlation functions :

$$
\varphi(t) = e^{Ht} \varphi(0) e^{-Ht}
$$
\n
$$
G(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p} \cdot (\vec{x} - \vec{x}_0)} \sum_{n, \vec{q}} \langle 0 | \varphi(x) | n, \vec{q} \rangle \langle n, \vec{q} | \varphi(x_0) | 0 \rangle
$$
\n
$$
= \sum_{n} e^{-E_{p}^{n}(t-t_0)} \Big| \langle 0 | \varphi(x_0) | n, \vec{p} \rangle \Big|^{2}
$$
\n
$$
= \sum_{n} W_{n} e^{-E_{p}^{n}(t-t_0)} \xrightarrow[t \to \infty]{} W_{1} e^{-E_{1}^{n}(t-t_0)}
$$
\n
$$
U_{0}
$$

Two point function

Semileptonic form factors

SM:
\n
$$
\frac{d\Gamma(D \to P\ell\nu)}{dq^2} = \frac{G_F^2 |V_{cx}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_D^2} \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_D^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 \right. \\ \left. + \frac{3m_\ell^2}{8q^2} (m_D^2 - m_P^2)^2 |f_0(q^2)|^2 \right]
$$
\n
$$
\langle P|V_\mu|D\rangle = f_+(q^2) \left(p_{D\mu} + p_{P\mu} - \frac{m_D^2 - m_P^2}{q^2} q_\mu \right) + f_0(q^2) \frac{m_D^2 - m_P^2}{q^2} q_\mu, \qquad \boldsymbol{V}_{\mu} = \boldsymbol{\bar{x}} \boldsymbol{\gamma}_{\mu} \boldsymbol{c}
$$
\n
$$
\frac{d\Gamma(D \to P\ell\nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |\vec{p}_P|^3 |V_{cx}|^2 |f_+(q^2)|^2 \qquad |V_{cd}| \text{ and } |V_{cs}|
$$
\n
$$
\langle P|T_{\mu\nu}|D\rangle = \frac{2}{m_D + m_P} [p_{P\mu} p_{D\nu} - p_{P\nu} p_{D\mu}] f_T(q^2) \qquad \text{Parity even current: BSM physics}
$$

′us ⊺ π

 $\mathbf{V_{cb}}$

WHEPP 2019

Semileptonic form factors

Observables in LQCD

$$
<\hat{O}>=Lim_{\beta\rightarrow\infty}\frac{1}{Z}\mathrm{Tr}[e^{-\beta H}\hat{O}(U,\overline{\psi},\psi)]
$$

$$
=Lim_{\beta\rightarrow\infty}\frac{\int DU D\overline{\psi} D\psi O[U,\overline{\psi},\psi] e^{-S_{g}[U]-S_{F}[U,\overline{\psi},\psi]}}{\int DU D\overline{\psi} D\psi e^{-S_{g}[U]-S_{F}[U,\overline{\psi},\psi]}}
$$

Integrating out the Grassmann variables is possible since F S_{E} = $\overline{\Psi}D \Psi$

$$
<\hat{O}>=\frac{\int DU \{detD\}^{n_f} O[U, D^{-1}] e^{-S_g[U]}}{\int DU \{detD\}^{n_f} e^{-S_g[U]}}=\prod_n \int dU_n \frac{1}{Z} \{detD(U)\}^{n_f} e^{-S_g[U]} O[U, D^{-1}]
$$

DAE-HEP, IITM, Dec 12, 2018

3 rd Heavy Flavour Meet-2019, IIT Indore

3 rd Heavy Flavour Meet-2019, IIT Indore

Analysis (Extraction of Mass)

Control of Sytemetics

Two and three point functions

$$
C_2^{\eta_c}(t) = \sum_i (A_{\eta_c}^i)^2 e^{-E_{\eta_c}^i t}
$$

$$
C_2^{B_c}(\tau) = \sum_i (A_{B_c}^i)^2 e^{-E_{B_c}^i \tau}
$$

$$
C_{3,m}^{B_c \to \eta_c}(t,\tau) = \sum_{i,j} A_{\eta_c}^i \varphi^m A_{B_c}^j e^{-E_{\eta_c}^i t} e^{-E_{B_c}^i \tau}
$$

 $\boldsymbol{\varphi}^{\boldsymbol{m}}$: Can be obtained by

- **fitting these two and three point function simultaneously**
- **constructing appropriate ratios**

 $f_{\pi^{\pm}}$ and $f_{K^{\pm}}$

 $\langle 0|\, \overline{d}\gamma_\mu \gamma_5 \, u |\pi^+(p)\rangle = i\, p_\mu f_{\pi^+}$ $\langle 0 | \bar{s} \gamma_\mu \gamma_5 u | K^+(p) \rangle = i p_\mu f_{K^+}$

FLAG'19

$\boldsymbol{f}_{\boldsymbol{K}^{\pm}}/\boldsymbol{f}_{\boldsymbol{\pi}}$ ±

Ratio of meson decay constants are easy to calculate and a good way to test unitarity

PDG:

$$
\left. \frac{V_{us}}{V_{ud}} \right| \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4)
$$

Error: 0.15%

FLAG'19

K semileptonic decay

$$
\langle \pi^+ | V^\mu | K^0 \rangle = f_+^{K^0 \pi^-} (q^2) [p_K^\mu + p_\pi^\mu] + f_-^{K^0 \pi^-} (q^2) [p_K^\mu - p_\pi^\mu]
$$

= $f_+^{K^0 \pi^-} (q^2) \left[p_K^\mu + p_\pi^\mu - \frac{m_K^2 - m_\pi^2}{q^2} q^\mu \right]$
+ $f_0^{K^0 \pi^-} (q^2) \frac{m_K^2 - m_\pi^2}{q^2} q^\mu$,

Experiments tell us:

 $|V_{us}| f_+(0) = 0.21654(41)$: PDG We just need the form factor $f_+(q^2=0)$ to extract $|V_{us}|$

$$
f_{+}(0) \equiv f_{+}^{K^{0}\pi^{-}}(0) = f_{0}^{K^{0}\pi^{-}}(0) = q^{\mu}\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle/(M_{K}^{2} - M_{\pi}^{2})\big|_{q^{2}\to 0}.
$$

 $f_+(0)$ from Lattice QCD: 0.9696(19) MILC/FNAL 0.9707(27) FLAG'19

S.Gottlieb'Lat19

 $|V_{\text{us}}|f_{+}^{K^0\pi^-}=0.21654(41)$ Moulson (CKM2017) $|V_{us}| = 0.22333(61)$ (MILC/FERMILAB: PRD99,114509(2019)

S.Gottlieb'Lat19

Is there a tension?

Results from K_{12} , K_{13} and the value of $|V_{ud}|$ = 0.0.97420()21) from superallowed nuclear β decays (1807.01146) implies a tension

MILC/Fermilab: Phys.Rev D99, 114509 (2019)

 $|V_u|^2 = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$ $= 0.99884(53); 2.2 \sigma$ $f_{+}(0)$ $= 0.99986(46)$ $2 + 1 + 1$ ${f}_{K^{\pm}}/{f}_{\pi^{\pm}}$ $2 + 1$ $= 0.99914(53); 1.6 \sigma$ $= 0.99999(54)$ $f_{+}(0)$ ${f}_{K^{\pm}}/{f}_{\pi^{\pm}}$ $|V_{ub}| = 3.94(36)10^{-3}$ Taking PDG value of

Second row: charm quark

Vud $\pi \rightarrow \ell \nu$	Vus $K \rightarrow \ell \nu$	Vub $B \rightarrow \ell \nu$
Vcd $K \rightarrow \pi \ell \nu$	Vcb $B \rightarrow \pi \ell \nu$	
Vcd $D \rightarrow \ell \nu$	Vcs $D \rightarrow \ell \nu$	Vcb $B \rightarrow D \ell \nu$
D $D \rightarrow \pi \ell \nu$	V-s $D \rightarrow K \ell \nu$	V-b $B \rightarrow D^* \ell \nu$
Vtd $\langle B_d \bar{B}_d \rangle$	Vts $B \rightarrow \pi \ell \ell$	Vtb $B \rightarrow K \ell \ell$

Charmed meson Decay Constants

Fermilab/MILC 18

Fermilab/MILC 14

 $\rm RBC/UKQCD$ 17

Fermilab/MILC 11

 ETM 14

 $\chi{\rm QCD}$ 14

 $HPQCD$ 12

 $HPQCD$ 10

sea

HA

 f_{D_s} (MeV)

$$
f_{D^0} = 211.6(0.3)_{stat}(0.5)_{syst}(0.2)_{f_{\pi,PDG}}[0.2]_{EM \text{ scheme } MeV,
$$

\n
$$
f_{D_s} = 249.9(0.3)_{stat}(0.2)_{syst}(0.2)_{f_{\pi,PDG}}[0.2]_{EM \text{ scheme } MeV,
$$

\n
$$
f_{D_s} = 249.9(0.3)_{stat}(0.2)_{syst}(0.2)_{f_{\pi,PDG}}[0.2]_{EM \text{ scheme } MeV,
$$

\n
$$
f_{D_s} = 249.9(0.3)_{stat}(0.2)_{syst}(0.2)_{f_{\pi,PDG}}[0.2]_{EM \text{ scheme } MeV,
$$

\n
$$
f_{D^+} = 212.7(0.3)_{stat}(0.2)_{syst}(0.2)_{f_{\pi,PDG}}[0.2]_{EM \text{ scheme } MeV,
$$

MILC : PRD98 (2018) no.7, 074512, arXiv:1810.00250

$$
f_D = 212.0(0.7) \text{ MeV}
$$

$$
f_{D_s} = 249.9(0.5) \text{ MeV}
$$

$$
\frac{f_{D_s}}{f_D} = 1.1783(0.0016)
$$

FLAG'19

V_{cd} and V_{cs}

PDG: $f_D|V_{cd}| = 45.91(1.05)$ MeV ${f}_{{D}_{S}}|{V}_{cs}|= 250$. 9 $(4\ldotp 0)$ MeV $|V_{cd}| = 0.2152(5)_{f_D}(49)_{expt}(6)_{EM}$ MILC/FERMILAB FLAG'19 $= 0.2166(7)(50)$ $|V_{cs}| = 1.001 (2)_{f_{D_s}} (16)_{expt} (3)_{EM}$ MILC/FERMILAB $= 1.004(2)(16)$ FLAG'19BES-III: $D_s^+ \to \mu^+ \nu_\mu$ Phys. Rev. Lett. 122, 071802 (2019) $f_{D_s}|V_{cs}| = 246.2 \pm 3.6_{\text{stat}} \pm 3.5_{\text{sys}} = 246.2(5.0) \text{MeV}$ $|V_{cs}|_{\text{SM},f_{D_s}} = 0.9822(2)_{f_{D_s}}(20)_{\text{expt}}(3)_{\text{EM}}$

Charm semileptonic decay

$$
N_f=2+1:
$$

 $f_+^{D\pi}(0) = 0.666(29)$ $f_{+}^{DK}(0) = 0.747(19)$

HPQCD: Phys.Rev. D82 (2010) 114506, Phys.Rev. D84 (2011) 114505

$$
N_f = 2 + 1 + 1:
$$

$$
f_+^{D\pi}(0) = 0.612(35)
$$

$$
f_+^{DK}(0) = 0.765(31)
$$

ETM: Phys. Rev. D96 (2017) 054514

Squares: leptonic Triangles: semileptonic

Dominant errors:

Experimental (leptonic) Theory (semileptonic)

FLAG'19

Summary of $|V_{cd}|$ **and** $|V_{cs}|$

Errors : 1.9-2.4% and 1.5%

Lattice QCD needs to improve semilleptonic results

S.Gottlieb'Lat19

Second row unitarity

 $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 : 1.050(2)_{|V_{cd}|}(32)_{|V_{cs}|}(0)_{|V_{cb}|}$ **1.6 sigma effect**

> : 0.996(64) (semileptonic decays…ETMC 1706.03657) semileptonic decays yield smaller value of $|V_{cs}|$, hence better agreement with unitarity

Third column: Bottom quark

$$
\left(\begin{array}{cccc} \mathbf{V}_{\mathbf{ud}} & \mathbf{V}_{\mathbf{us}} & \mathbf{V}_{\mathbf{ub}} \\ \pi \rightarrow \ell \nu & K \rvert \rightarrow \ell \nu & \overline{B \rightarrow \ell \nu} \\ K \rightarrow \pi \ell \nu & \overline{B \rightarrow \pi \ell \nu} \end{array}\right)
$$
\n
$$
\begin{array}{c} \mathbf{V}_{\mathbf{cd}} & \mathbf{V}_{\mathbf{cs}} & \mathbf{V}_{\mathbf{cb}} \\ \mathbf{D \rightarrow \ell \nu} & \mathbf{D}_s \rightarrow \ell \nu & \overline{B \rightarrow D \ell \nu} \\ D \rightarrow \pi \ell \nu & D \rightarrow K \ell \nu & \overline{B \rightarrow D^* \ell \nu} \end{array}\right)
$$
\n
$$
\begin{array}{c} \mathbf{S}_{\mathbf{c}} & \mathbf{V}_{\mathbf{c}} \\ \mathbf{V}_{\mathbf{td}} & \mathbf{V}_{\mathbf{ts}} & \mathbf{V}_{\mathbf{tb}} \\ \langle B_d | \bar{B}_d \rangle & \langle B_s | \bar{B}_s \rangle \\ B \rightarrow \pi \ell \ell & B \rightarrow K \ell \ell \end{array}
$$
\nSemileptonic

B hadron decays

- Leptonic and semileptonic decays are being studied in LQCD
	- Mesons are extensively studied
	- Baryon results are also coming
- Rare decays involving flavour changing neutral currents are also studied
	- \triangleright FCNC vanish at tree level in SM, so a good place to look for new physics
	- \triangleright Some tension between SM predictions from Lattice and LHCb measurement
	- Alternative to B-meson mixing for determining $|V_{td}|$ and $|V_{ts}|$

Leptonic decay constants of $B(q,s,c)$ mesons

$$
\Gamma(B \to l \nu) = \frac{m_B}{8\pi} G_F^2 f_B^2 |V_{ub}|^2 m_l^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2
$$

 $B(B^{-} \rightarrow \tau \bar{\nu})$ = 0.91 ± 0.22 from Belle, $= 1.79 \pm 0.48$ from BaBar, $= 1.06 \pm 0.33$ average,

- $|V_{ub}|f_B = 0.72 \pm 0.09$ MeV from Belle,
	- $= 1.01 \pm 0.14$ MeV from BaBar,
	- $= 0.77 \pm 0.12$ MeV average,

FLAG'19

$$
f_{B^+} = 189.4(0.8)_{stat}(1.1)_{syst}(0.3)_{f_{\pi,PDG}}[0.1]_{EM \text{ scheme}} \text{ MeV}, \qquad f_{B_s}/f_{B^+} = 1.2180(33)_{stat}(33)_{syst}(05)_{f_{\pi,PDG}}[03]_{EM \text{ scheme}},
$$
\n
$$
f_{B_0} = 190.5(0.8)_{stat}(1.0)_{syst}(0.3)_{f_{\pi,PDG}}[0.1]_{EM \text{ scheme}} \text{ MeV}, \qquad f_{B_s}/f_{B^0} = 1.2109(29)_{stat}(25)_{syst}(04)_{f_{\pi,PDG}}[03]_{EM \text{ scheme}},
$$
\n
$$
f_{B_s} = 230.7(0.8)_{stat}(1.0)_{syst}(0.2)_{f_{\pi,PDG}}[0.2]_{EM \text{ scheme}} \text{ MeV}, \qquad f_{B_s}/f_{D_s} = 0.9233(25)_{stat}(42)_{syst}(02)_{f_{\pi,PDG}}[03]_{EM \text{ scheme}}.
$$

$$
N_f = 2 + 1 + 1: \t\t f_B = 190.0(1.3) \text{ MeV}
$$

\n
$$
N_f = 2 + 1 + 1: \t\t f_{B_s} = 230.3(1.3) \text{ MeV}
$$

\n
$$
N_f = 2 + 1 + 1: \t\t \frac{f_{B_s}}{f_B} = 1.209(0.005)
$$

FLAG'19

FLAG'19

B meson semileptonic and rare decays

Semileptonic decays :

$$
B \to \pi \ell \nu, B_s \to K \ell \nu, B_s \to K^* \ell \nu, \Lambda_b \to p \ell \nu
$$

 $B \to D\ell\nu, B \to D^*\ell\nu, B_s \to D_s^{(*)}\ell\nu, \Lambda_b \to \Lambda_c\ell\nu$

$$
\frac{d\Gamma(B_{(s)} \to P\ell\nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_{B_{(s)}}^2} \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_{B_{(s)}}^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 \right. \\ \left. + \frac{3m_\ell^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2 |f_0(q^2)|^2 \right]
$$

Rare decays (FCNC) :

$$
B^0 \to \mu^+ \mu^-, B_s \to \mu^+ \mu^-, B \to K \ell^+ \ell^-
$$

FLAG'19

Inclusive Vs exclusive decays

Long standing difference in the determination of $|V_{ub}|$

S.Gottlieb'Lat19

$|V_{ub}|$ from FLAG

- BaBar and Belle leptonic decays results don't agree very well.
- Leptonic error totally dominated by experiment.
- Semileptonic result is more precise.
- Tension between inclusive and exclusive determinations.
- Critical role for Belle II for both leptonic and semileptonic results
- Lattice semileptonic will improve in the next couple of years as $N_f = 2 + 1 + 1$ results become available.

 $V_{ub} = 3.73(0.14) \times 10^{-3}, i.e., 3.8\%$ 43 S.Gottlieb'Lat19

$B \rightarrow D l \nu$

Scalar and vector form factors : 2

$$
\frac{\langle D(p_D)|i\bar{c}\gamma_\mu b|B(p_B)\rangle}{\sqrt{m_D m_B}} = h_+(w)(v_B + v_D)_\mu + h_-(w)(v_B - v_D)_\mu,
$$

$$
f_{+}(q^{2}) = \frac{1}{2\sqrt{r}} \left[(1+r)h_{+}(w) - (1-r)h_{-}(w) \right],
$$

\n
$$
f_{0}(q^{2}) = \sqrt{r} \left[\frac{1+w}{1+r}h_{+}(w) + \frac{1-w}{1-r}h_{-}(w) \right],
$$

$B \rightarrow D^* l \nu$

Vector and axial-vector form factors : 4

$$
\langle D^* | V_\mu | B \rangle = \sqrt{m_B m_{D^*}} h_V(w) \varepsilon_{\mu\nu\alpha\beta} \varepsilon^{*\nu} v_D^{\alpha} v_B^{\beta},
$$

\n
$$
\langle D^* | A_\mu | B \rangle = i \sqrt{m_B m_{D^*}} \left[h_{A_1}(w)(1+w) \varepsilon^{*\mu} - h_{A_2}(w) \varepsilon^* \cdot v_B v_{B\mu} - h_{A_3}(w) \varepsilon^* \cdot v_B v_{D^*\mu} \right]
$$

\n
$$
\frac{d\Gamma_{B^- \to D^0 \ell^- \bar{\nu}}}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} |\eta_{\text{EW}}|^2 |V_{cb}|^2 |\mathcal{G}(w)|^2,
$$

\n
$$
\frac{d\Gamma_{B^- \to D^{0*} \ell^- \bar{\nu}}}{dw} = \frac{G_F^2 m_{D^*}^3}{4\pi^3} (m_B - m_{D^*})^2 (w^2 - 1)^{1/2} |\eta_{\text{EW}}|^2 |V_{cb}|^2 \chi(w) |\mathcal{F}(w)|^2,
$$

\n
$$
v_P = p_P / m_P \qquad w = v_B \cdot v_{D^{(*)}} \qquad \eta_{\text{EW}} = 1.0066
$$

46

HPQCD $B_s \to D_s$

1906.00701

A. Lytle, Lat19

HPQCD
$$
B_{(s)} \to D^*_{(s)}
$$

$$
B_s\to D_s^*
$$

 $R(D) = B(B \to D\tau\nu)/B(B \to D\ell\nu)$ with $\ell = e, \mu$

 $R(D_s) = 0.314(6)$ $R(D) = 0.300(8)$

> **MILC:** Phys. Rev. D92 (2015) 034506, **HPQCD:** Phys. Rev. D92 (2015) 054510

 $B_s \rightarrow \mu^+ \mu^-$ Rare decay:

LHCb, CMS: Nature 522 (2015) 68

 $f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_K^2) = 1.046(44)(15),$ $f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_\pi^2) = 1.054(47)(17)$

MILC: Phys.Rev. D85 (2012) 114502

 $f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_K^2) = 1.000(62)$ $f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_\pi^2) = 1.006(62)$

HPQCD: Phys. Rev. D95 (2017) 114506

$$
\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)} = 0.71 \pm 0.17 \,\text{(stat)} \pm 0.18 \,\text{(syst)}.
$$

LHCb : Phys. Rev. Lett. 120 (2018) no.12, 121801

SM : 0.25 -0.28

Form factors

 $\mathbf{B}_c \to \eta_c l \nu$

$$
\langle \eta_c(p)|V^{\mu}|B_c(P)\rangle = f_+(q^2)\left[P^{\mu} + p^{\mu} - \frac{M^2 - m^2}{q^2}q^{\mu}\right] + f_0(q^2)\frac{M^2 - m^2}{q^2}q^{\mu}
$$

$$
\begin{aligned}\n\mathbf{B}_{\mathbf{C}} &\rightarrow \mathbf{J}/\mathbf{\psi}\mathbf{I}\mathbf{v} \\
\langle J/\psi(p,\varepsilon)|V^{\mu} - A^{\mu}|B_{c}(P)\rangle &= \frac{2i\varepsilon^{\mu\nu\rho\sigma}}{M+m} \varepsilon_{\nu}^{*}p_{\rho}P_{\sigma}V(q^{2}) - (M+m)\varepsilon^{*\mu}A_{1}(q^{2}) + \\
&\frac{\varepsilon^{*} \cdot q}{M+m}(p+P)^{\mu}A_{2}(q^{2}) + 2m\frac{\varepsilon^{*} \cdot q}{q^{2}}q^{\mu}A_{3}(q^{2}) - 2m\frac{\varepsilon^{*} \cdot q}{q^{2}}q^{\mu}A_{0}(q^{2}) \\
q &= P - p \\
q_{\text{max}}^{2} \quad \text{: Outgoing hadron at rest} \\
q^{2} &= 0 \quad \text{: Maximum recoil}\n\end{aligned}
$$

Colquhoun *et al* **HPQCD : 1611.01987 A. Lytle : CKM2016 NM : Lattice 2017**

$|V_{cb}|$ from FLAG

- Good agreement between the two decay channels for 2+1 flavor lattice form factors.
- Tension between inclusive and exclusive is not that bad.

Semileptonic form factors in baryon decays

$$
\Lambda_c\to \Lambda\ell\nu
$$

$$
\Lambda_b\to p\ell\nu
$$

$$
\Lambda_b\to \Lambda_c\ell\nu
$$

Alternate ways to get $|V_{cs}|$ Alternate ways to get $|V_{bu}|$ Alternate ways to get $|V_{bc}|$

$$
\langle \Lambda | \bar s \gamma^\mu (1-\gamma_5) c | \Lambda_c \rangle
$$

$$
\frac{\Gamma(\Lambda_c \to \Lambda e^+ \nu_e)}{|V_{cs}|^2} = 0.2007(71)(74) \text{ ps}^{-1},
$$

$$
\frac{\Gamma(\Lambda_c \to \Lambda \mu^+ \nu_\mu)}{|V_{cs}|^2} = 0.1945(69)(72) \text{ ps}^{-1}.
$$

Detmold et. al.: Phys. Rev. D92 (2015) 034503,

Possibility of exclusive determination of |Vub|/|Vcb|

S. Meinel, Phys. Rev. Lett. 118 (2017) 082001

V_{ub} and V_{cb}

Using BGL rather than CNL for $B\rightarrow D^*$ eliminates tension between inclusive and exclusive determinations of Vcb. Tension for $B\rightarrow \pi$ remains! Lambda decay not in fit to exclusive decays.

Third row: B meson mixing

$$
\left(\begin{array}{cccc} \mathbf{V}_{\mathbf{ud}} & \mathbf{V}_{\mathbf{us}} & \mathbf{V}_{\mathbf{ub}} \\ \pi \rightarrow \ell \nu & K \rvert \rightarrow \ell \nu & B \rightarrow \ell \nu \\ K \rightarrow \pi \ell \nu & B \rightarrow \pi \ell \nu \\ \mathbf{V}_{\mathbf{cd}} & \mathbf{V}_{\mathbf{cs}} & \mathbf{V}_{\mathbf{cb}} \\ D \rightarrow \ell \nu & D_s \rightarrow \ell \nu & B \rightarrow D \ell \nu \\ D \rightarrow \pi \ell \nu & D \rightarrow K \ell \nu & B \rightarrow D^* \ell \nu \\ \mathbf{V}_{\mathbf{td}} & \mathbf{V}_{\mathbf{ts}} & \mathbf{V}_{\mathbf{tb}} \\ \hline \langle B_d | B_d \rangle & \langle B_s | B_s \rangle \\ B \rightarrow \pi \ell \ell & B \rightarrow K \ell \ell \end{array}\right)
$$

B meson mixing

- B meson mixing is a loop level process
- Experiments can measure mass difference, lifetime difference for the two resulting eigenstates and also can measure a CP violating phase
- Short distance expansion of the loops results in effective weak Hamiltonian involving 4-quark operators
- GIM and loop suppression, so good place to look for BSM

Neutral B-meson mixing

$$
\langle \overline{B}_{q}^{0} | H_{eff}^{AB=2} | B_{q}^{0} \rangle \qquad H_{eff,BSM}^{AB=2} = \sum_{q=d,s} \sum_{i=1}^{5} c_{i} Q_{i}^{q} \qquad Q_{2}^{q} = \left[\overline{b} \gamma_{\mu} (1 - \gamma_{5}) q \right] \left[\overline{b} \gamma_{\mu} (1 - \gamma_{5}) q \right]
$$
\n
$$
\text{Bag Parameter:} \qquad B_{B_{q}}(\mu) = \frac{\langle \overline{B}_{q}^{0} | Q_{R}^{q}(\mu) | B_{q}^{0} \rangle}{\frac{8}{3} f_{B}^{2} m_{B}^{2}} \qquad Q_{3}^{q} = \left[\overline{b} (1 - \gamma_{5}) q \right] \left[\overline{b} (1 - \gamma_{5}) q \right],
$$
\n
$$
\Omega_{4}^{q} = \left[\overline{b} (1 - \gamma_{5}) q \right] \left[\overline{b} (1 + \gamma_{5}) q \right],
$$
\n
$$
\Omega_{5}^{q} = \left[\overline{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \right] \left[\overline{b}^{\beta} (1 - \gamma_{5}) q^{\alpha} \right],
$$
\n
$$
\Omega_{5}^{q} = \left[\overline{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \right] \left[\overline{b}^{\beta} (1 + \gamma_{5}) q^{\alpha} \right],
$$
\n
$$
\Omega_{5}^{q} = \left[\overline{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \right] \left[\overline{b}^{\beta} (1 + \gamma_{5}) q^{\alpha} \right],
$$
\n
$$
\Omega_{B_{q}}^{q} = \left[\overline{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \right] \left[\overline{b}^{\beta} (1 + \gamma_{5}) q^{\alpha} \right],
$$
\n
$$
\Omega_{B_{q}} = \left(\frac{\overline{g} (\mu)^{2}}{4 \pi} \right) \gamma_{0} / (2 \beta_{0}) \left\{ 1 + \frac{\overline{g} (\mu)^{2}}{(4 \pi)^{2}} \left[\frac{\beta_{1} \gamma_{0} - \beta_{0} \gamma_{1}}{2 \
$$

Neutral B-meson mixing

Third row

Using experimental results on B,Bs mixings, MILC/FNAL reported :

60

CKM Summary

Belle II prospects

Fig. 87: Projections of the $|V_{ub}|$ uncertainty for various luminosity values and lattice-QCD error forecasts for $B \to \pi \ell \nu$ tagged and untagged modes. The figure on the left is obtained by using lattice forecasts with EM corrections and the figure on the right by forecasts without these corrections.

Conclusions

- Lattice QCD is playing a crucial role in determining decay constants and form factors of various hadrons and in turn helping in precise determination of the CKM matrix elements
	- \triangleright A number of quantities are available to sub-percent accuracy.
	- \triangleright Getting to the point where electromagnetic corrections important to lattice calculations
	- \triangleright Expect to increase LQCD precision by factor of 3-5 over the next 5-10 years
- **Heavy flavour physics is a precision tool to discover new physics.** Lattice QCD calculations are absolutely necessary for this.
- **Interplay between theory and experiments will provide more and more stringent** test of the standard model of particle physics.
- **BESIII, Belle II, and LHCb have a large role to play in the future of flavour physics**