# Pseudo Goldstone Dark Matter and Inflation

### Based on JHEP 1810 (2018) 124



### Subhaditya Bhattacharya, Abhijit Kumar Saha, Arunansu Sil, Jose Wudka



1/12

- Inflation and Dark matter can't be explained within SM.
- The two unknown problems may be connected.
- We look for a solution by considering a different sector that can address these two.
- Inflation sector can be embedded into a hidden susy breaking sector where inflationary energy scale can be dynamically generated.
- The susy breaking sector could be a SQCD sector in the form of supersymmetric QCD.
- SQCD-embedded inflation model has existence of a UV complete theory.

#### WHEPP 2019

\* 3 > < 3 >

# Smooth Hybrid Inflation in SQCD

• Inflationary sector represented by a strongly coupled supersymmetric SU(N) gauge group with  $N_f = N_C$  flavours of quark superfields  $Q_i$  and  $\bar{Q}_i$ .

Global symmetry:  $SU(N_f) \times SU(N_f) \times U(1)_B \times U(1)_R$ . Below the strong coupling regime ( $\Lambda_0$ ) they form mesons and baryons [hep-th/0602239]

$$T_{ij} = \frac{Q_i \bar{Q}_i}{\Lambda_0}, \ B = \frac{\epsilon_{abcd} Q_1^a Q_2^b Q_3^c Q_4^d}{\Lambda_0^3}, \ \bar{B} = \frac{\epsilon_{1234} \bar{Q}_1^a \bar{Q}_2^b \bar{Q}_3^c \bar{Q}_4^d}{\Lambda_0^3} \quad (1)$$

Superpotential:  $W_{N_f=N_c} = S(\frac{\det T}{\Lambda_0^2} - B\bar{B} - \Lambda_{eff}^2)$ 

- $N_f = N_C$  theory can be realized from  $N_f = N_c + 1$  version of SQCD by making the  $N_f$ th quark heavy  $(W_m = m_Q Q_{N_f+1} \overline{Q}_{N_f+1})$  below it.
- The heavy quark can be identified with the S-field and  $\Lambda_{\text{eff}} = m_Q \Lambda_0$ .

#### WHEPP 2019

# contd.

• Inflation can be realized with  $N_f = N_c = 4$  along  $B = \overline{B} = 0$ and  $T_{ij} = \chi \delta_{ij} [arXiv:0902.0972]$ .

So inflationary superpotential [hep-ph/9606297]

$$W_{\rm Inf} = S\left(\frac{\chi^4}{\Lambda_0^2} - \Lambda_{\rm eff^2}\right)$$
 (2)

At global minimum  $T = \sqrt{\Lambda_0 \Lambda_{\text{eff}}}$ , thus breaks the global symmetry  $SU(4)_L \times SU(4)_R \times U(1)_B \times U(1)_R \rightarrow SU(4)_V \times U(1)_B \times U(1)_R.$ 

Inflationary predictions:  $r \simeq 10^{-7}$ ,  $n_s = 0.967$ . Allowed by Planck 2016???[arXiv:1502.01589]

#### **WHEPP 2019**

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

# NGB as DM

• Associated flavor symmetry breaks down after inflation, 15 NGB's will appear.

$$T_{N_f \times N_f} = \chi \exp\left(\frac{iG_S^2 \lambda^a}{\langle \chi \rangle}\right),\tag{3}$$

Can those  $(t^a)$  be DM??

• Masses of NGB's can be generated through Dashen formulla by explicit breaking of broken SU(4) in the superpotential  $(m = \text{diag}\{m_1, m_2, m_3, m_4\}).$ 

$$\langle \chi \rangle^2 (m_{\mathcal{G}_S}^a)^2 = \langle 0 | [\tilde{\mathcal{Q}}_a, [\tilde{\mathcal{Q}}_a, H]] | 0 \rangle \tag{4}$$

$$= \bar{\psi} \left[ \frac{\lambda_a}{2}, \left[ \frac{\lambda_a}{2}, m_{\text{diag}} \right]_+ \right]_+ \psi$$
 (5)

We modify the inflationary superpotential to generate the interactions of NGBs with  $\mathsf{SM}$ 

$$W_{\rm Inf} = S\left(\frac{\det T}{\Lambda_0^2} - \Lambda_{\rm eff}^2\right) + \kappa_1 S\left\{{\rm Tr}(T^2) - \frac{({\rm Tr}\ T)^2}{N_f}\right\} + \kappa_2 SH_u H_d,$$

$$WHEPP\ 2019$$

$$5/12$$

# contd.

- If  $m_1 = m_2 = m_3 = m_4$  we get 15 no's of degenerate DM.
- For a different choice  $m_1 = m_2 = m_3 = m_\gamma$  and  $m_4 \gg m_\gamma$ , three different sets of NGB (i)  $m_A = m_\gamma \frac{\Lambda_{\text{eff}}^3}{\langle \chi \rangle^2}$ , (ii)  $m_B = \left(m_4 + m_\gamma\right) \frac{\Lambda_{\text{eff}}^3}{\langle \chi \rangle^2}$ ,

(iii) 
$$m_C = \left(\frac{3}{2}m_4 + \frac{m_\gamma}{2}\right)\frac{\Lambda_{\text{eff}}^3}{\langle\chi\rangle^2}.$$

Degeneracies 8,6 and 1.

Interaction Lagrangian with visible sector:

$$V \supset -\left(\lambda' h^2 + \lambda'' h v_d\right) \sum_{a}' (G_S^a)^2, \qquad (7)$$

where

$$\lambda = \frac{\kappa_1 \kappa_2}{2}, \lambda' = \frac{1}{2} \lambda \sin \alpha \cos \alpha, \quad \lambda'' = \frac{1}{2} \lambda \cos \alpha (\tan \alpha - \tan \beta)$$
WHEPP 2019

# Important formulas

$$\tan \beta = \frac{v_u}{v_d}, v = \sqrt{v_u^2 + v_d^2} \simeq 246 \text{GeV}$$
(9)

The mixing angle  $\alpha$  can be expressed in terms of  $\beta$  and the pseudoscalar A mass as

$$\tan 2\alpha = \tan 2\beta \, \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2},\tag{10}$$

In large  $M_A$  limit  $tan2\alpha = tan 2\beta$ . Solutions:  $\alpha = \beta$  and  $\alpha = \beta + \frac{\pi}{2}$ . We work with  $\alpha = \beta + \frac{\pi}{2}$  otherwise  $\lambda'' \to 0$ . WHEPP 2019

# Relic density and direct search

Three parameters  $m_{G_s}$ ,  $\lambda$ , tan  $\beta$ . **Case I**: Boltzman equation:

$$\dot{n}_{G_S} + 3Hn_{G_S} = -\langle \sigma v \rangle_{G_S G_S \to SM} (n_{G_S}^2 - n_{eq}^2)$$
(12)

Relic density  $\Omega_T = 15\Omega_{G_s}$ .



**WHEPP 2019** 

8/12

**Case II:** Three sets of DM ( $m_A < m_B < m_C$ ).

Assume A-type having mass  $m_h/2$  .

 $CC \rightarrow BB, AA$  and  $BB \rightarrow AA$  possible.

$$\Omega_T = 6\Omega_B + \Omega_C \tag{13}$$

Parameters:  $\{\kappa_1, \lambda, m_B, m_C\}$ 



**WHEPP 2019** 

伺 と く ヨ と く ヨ と

## **Boltzman equations:**

$$\begin{split} \frac{dn_{C}}{dt} + 3Hn_{C} &= -\langle \sigma v \rangle_{G_{C}G_{C} \to \mathrm{SM}} (n_{C}^{2} - n_{C}^{\mathrm{eq2}}) - 6\langle \sigma v \rangle_{G_{C}G_{C} \to G_{B}G_{B}} (n_{C}^{2} - \frac{n_{C}^{\mathrm{eq2}}}{n_{B}^{\mathrm{eq2}}} n_{B}^{2}) \\ &- 8\langle \sigma v \rangle_{G_{C}G_{C} \to G_{A}G_{A}} (n_{C}^{2} - \frac{n_{C}^{\mathrm{eq2}}}{n_{A}^{\mathrm{eq2}}} n_{A}^{2}) \\ \frac{dn_{B_{i}}}{dt} + 3Hn_{B_{i}} &= -\langle \sigma v \rangle_{G_{B_{i}}G_{B_{i}} \to \mathrm{SM}} (n_{B_{i}}^{2} - n_{B_{i}}^{\mathrm{eq2}}) + \langle \sigma v \rangle_{G_{C}G_{C} \to G_{B_{i}}G_{B_{i}} \sigma_{B_{i}}} n_{B_{i}}^{2} n_{B_{i}}^{2}) \\ &+ 8\langle \sigma v \rangle_{G_{B_{i}}G_{B_{i}} \to G_{A_{i}}G_{A_{i}}} (n_{B_{i}}^{2} - \frac{n_{B_{i}}^{\mathrm{eq2}}}{n_{A_{i}}^{2}} n_{A_{i}}^{2}) \end{split}$$

**Results:** 



#### **WHEPP 2019**

11/12

・ロト・日本・山本・山本・山本・日本





- Chiral symmetry broken down spontaneously at the end of inflation, NGB appears in the set-up.
- Depending on the explicit chiral symmetry breaking term, there could be different degree of degenracy among the masses of these pNGBs.
- 15 dengenerate DM is almost ruled out from direct detection limit
- However degerenrate DM scenario is still valid thanks to the interactions among them.

E > < E >