Pseudo Goldstone Dark Matter and Inflation

Based on JHEP 1810 (2018) 124

 Ω

Subhaditya Bhattacharya, Abhijit Kumar Saha, Arunansu Sil, Jose Wudka

- Inflation and Dark matter can't be explained within SM.
- The two unknown problems may be connected.
- We look for a solution by considering a different sector that can address these two.
- Inflation sector can be embedded into a hidden susy breaking sector where inflationary energy scale can be dynamically generated.
- The susy breaking sector could be a SQCD sector in the form of supersymmetric QCD.
- SQCD-embedded inflation model has existence of a UV complete theory.

WHEPP 2019 [2/12](#page-0-0)

 $\mathcal{A} \cong \mathcal{B} \times \mathcal{A} \cong \mathcal{B} \times \mathcal{B}$

 2990

Smooth Hybrid Inflation in SQCD

• Inflationary sector represented by a strongly coupled supersymmetric SU(N) gauge group with $N_f = N_c$ flavours of quark superfields Q_i and \bar{Q}_i .

Global symmetry: $SU(N_f) \times SU(N_f) \times U(1)_B \times U(1)_R$. Below the strong coupling regime (Λ_0) they form mesons and baryons [hep-th/0602239]

$$
T_{ij} = \frac{Q_i \bar{Q}_i}{\Lambda_0}, \ B = \frac{\epsilon_{abcd} Q_1^a Q_2^b Q_3^c Q_4^d}{\Lambda_0^3}, \ \ \bar{B} = \frac{\epsilon_{1234} \bar{Q}_1^a \bar{Q}_2^b \bar{Q}_3^c \bar{Q}_4^d}{\Lambda_0^3} \tag{1}
$$

Superpotential: $\mathcal{W}_{N_f=N_c} = S(\frac{\det \text{T}}{\Lambda_0^2} - B\bar{B} - \Lambda_{\text{eff}}^2)$ 0

- \bullet $N_f = N_c$ theory can be realized from $N_f = N_c + 1$ version of SQCD by making the N_f th quark heavy ($W_m = m_Q Q_{N_f+1} \bar{Q}_{N_f+1}$) below it.
- **•** The heavy quark can be identified with the S-field and $\Lambda_{\text{eff}} = m_O \Lambda_0$.

WHEPP 2019 $3/12$

contd.

• Inflation can be realized with $N_f = N_c = 4$ along $B = \overline{B} = 0$ and $T_{ii} = \chi \delta_{ii} [\text{arXiv:0902.0972}]$.

So inflationary superpotential [hep-ph/9606297]

$$
W_{\rm Inf} = S \Big(\frac{\chi^4}{\Lambda_0^2} - \Lambda_{\rm eff^2} \Big) \tag{2}
$$

At global minimum $\mathcal{T}=$ √ $\Lambda_0\Lambda_{\text{eff}}$, thus breaks the global symmetry $SU(4)_l \times SU(4)_R \times U(1)_B \times U(1)_R \rightarrow SU(4)_V \times U(1)_B \times U(1)_R$.

Inflationary predictions: $r \simeq 10^{-7}$, $n_s = 0.967$. Allowed by Planck 2016???[arXiv:1502.01589]

WHEPP 2019 $4/12$

 $\overline{4}$ $\overline{4}$ $\overline{2}$ $\overline{1}$ $\overline{4}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ $\overline{1}$ $\overline{2}$ $\overline{1}$

 Ω

NGB as DM

Associated flavor symmetry breaks down after inflation, 15 NGB's will appear.

$$
T_{N_f \times N_f} = \chi \exp\left(\frac{iG_s^2 \lambda^a}{\langle \chi \rangle}\right),\tag{3}
$$

Can those (t^a) be DM??

Masses of NGB's can be generated through Dashen formulla by explicit breaking of broken $SU(4)$ in the superpotential $(m = \text{diag}\{m_1, m_2, m_3, m_4\}).$

$$
\langle \chi \rangle^2 (m_{G_S}^a)^2 = \langle 0 | [\tilde{\mathcal{Q}}_a, [\tilde{\mathcal{Q}}_a, H]] | 0 \rangle \tag{4}
$$

$$
= \bar{\psi} \Big[\frac{\lambda_a}{2}, \Big[\frac{\lambda_a}{2}, m_{\text{diag}} \Big]_+ \Big]_+ \psi \tag{5}
$$

We modify the inflationary superpotential to generate the interactions of NGBs with SM

$$
W_{\text{Inf}} = S\left(\frac{\det \mathcal{T}}{\Lambda_0^2} - \Lambda_{\text{eff}}^2\right) + \kappa_1 S \left\{\text{Tr}(\mathcal{T}^2) - \frac{(\text{Tr }\mathcal{T})^2}{N_f}\right\} + \kappa_2 S H_u H_d,
$$

WHERE P 2019

contd.

- If $m_1 = m_2 = m_3 = m_4$ we get 15 no's of degenerate DM.
- For a different choice $m_1 = m_2 = m_3 = m_\gamma$ and $m_4 \gg m_\gamma$, three different sets of NGB (i) $m_A = m_\gamma \frac{\Lambda_{\text{eff}}^3}{\langle \chi \rangle^2}$, (ii) $m_B = \left(m_4 + m_\gamma\right) \frac{\Lambda_{\text{eff}}^3}{\langle \sqrt{\lambda^2}\rangle^2}$

(ii)
$$
m_B = \left(m_4 + m_\gamma\right) \frac{N_{\text{eff}}}{\langle \chi \rangle^2}
$$
,
(iii) $m_C = \left(\frac{3}{2}m_4 + \frac{m_\gamma}{2}\right) \frac{N_{\text{eff}}}{\langle \chi \rangle^2}$.

Degeneracies 8,6 and 1.

Interaction Lagrangian with visible sector:

$$
V \supset -\left(\lambda^{'}\,h^2 + \lambda^{''}\,h\nu_d\right)\sum_{a}^{'}(G_S^a)^2\,,\tag{7}
$$

where

$$
\lambda = \frac{\kappa_1 \kappa_2}{2}, \lambda' = \frac{1}{2} \lambda \sin \alpha \cos \alpha, \quad \lambda'' = \frac{1}{2} \lambda \cos \alpha (\tan \alpha - \tan \beta)
$$

WHERE 2019

Important formulas

$$
\tan \beta = \frac{v_u}{v_d}, v = \sqrt{v_u^2 + v_d^2} \simeq 246 \text{GeV}
$$
 (9)

The mixing angle α can be expressed in terms of β and the pseudoscalar A mass as

$$
\tan 2\alpha = \tan 2\beta \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2},
$$
\n(10)\n(11)

In large M_A limit $tan2\alpha = tan 2\beta$. Solutions: $\alpha = \beta$ and $\alpha = \beta + \frac{\pi}{2}$ $\frac{\pi}{2}$. $\frac{\pi}{2}$ otherwise $\lambda'' \to 0$. We work with $\alpha = \beta + \frac{\pi}{2}$ 2990 **WHEPP 2019** $7/12$

Relic density and direct search

Three parameters $m_{G_{\rm s}},\ \lambda$, tan $\beta.$ Case I: Boltzman equation:

$$
\dot{n}_{G_S} + 3Hn_{G_S} = -\langle \sigma v \rangle_{G_S G_S \to SM}(n_{G_S}^2 - n_{eq}^2)
$$
 (12)

Relic density $\Omega_{\mathcal{T}}=15\Omega_{\mathcal{G}_{\mathrm{s}}}.$

WHEPP 2019 [8/12](#page-0-0)

э

э

4日)

 QQ

Case II: Three sets of DM $(m_A < m_B < m_C)$.

Assume A-type having mass $m_h/2$.

 $CC \rightarrow BB$, AA and $BB \rightarrow AA$ possible.

Interacton term: $\frac{\kappa_1^2}{4} \sum_{a,b} (G_s^a)^2 (G_s^b)^2$ A-type has negligible contribution to total relic.

$$
\Omega_T = 6\Omega_B + \Omega_C \tag{13}
$$

Parameters: $\{\kappa_1, \lambda, m_B, m_C\}$

 \sqrt{m}) \sqrt{m}) \sqrt{m}).

 QQ

 \leftarrow \Box

Boltzman equations:

$$
\frac{d_{n_C}}{dt} + 3H_{n_C} = -\langle \sigma v \rangle_{G_C G_C \to SM} (n_C^2 - n_C^{eq2}) - 6 \langle \sigma v \rangle_{G_C G_C \to G_B G_B} (n_C^2 - \frac{n_C^{eq2}}{n_B^{eq2}} n_B^2)
$$
\n
$$
- 8 \langle \sigma v \rangle_{G_C G_C \to G_A G_A} (n_C^2 - \frac{n_C^{eq2}}{n_A^{eq2}} n_A^2)
$$
\n
$$
\frac{d_{n_B}}{dt} + 3H_{n_B} = -\langle \sigma v \rangle_{G_{B_i} G_{B_i} \to SM} (n_{B_i}^2 - n_{B_i}^{eq2}) + \langle \sigma v \rangle_{G_C G_C \to G_{B_i} G_{B_i}} (n_C^2 - \frac{n_C^{eq2}}{n_{B_i}^{eq2}} n_{B_i}^2)
$$
\n
$$
+ 8 \langle \sigma v \rangle_{G_{B_i} G_{B_i} \to G_{A_i} G_{A_i}} (n_{B_i}^2 - \frac{n_{B_i}^{eq2}}{n_{A_i}^{eq2}} n_{A_i}^2)
$$

Results:

WHEPP 2019 [11/12](#page-0-0)

◆ロト ◆ 伊

 \sim

K 등 K K 등 K

È

 299

- Chiral symmetry broken down spontaneously at the end of inflation, NGB appears in the set-up.
- Depending on the explicit chiral symmetry breaking term, there could be different degree of degenracy among the masses of these pNGBs.
- 15 dengenerate DM is almost ruled out from direct detection limit
- However degerenrate DM scenario is still valid thanks to the interactions among them.

 $A\equiv\mathbb{R}^n,\quad A\equiv\mathbb{R}^n.$

 200