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Production of Magnetic Field in HIC

No magnetic field in the case of central collisions. Fluctuations??

Magnetic field generates in the non-central collisions along the y -axis
at the center.

Magnitude of magnetic field at the center can be ∼ 1015 Tesla (∼ 0.1
GeV2 ∼ 5m2

π) (104 times stronger than magnetic field of a magnetar).
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Survival of Magnetic Field due to conducting plasma

In the vacuum magnetic field decays immediately, while medium with
a good conductivity protects magnetic field from decay.

Medium forms at thermalization time τ0 < 1 fm in RHICE.

Once the thermalized medium forms, evolution of the magnetized
medium should be governed by relativistic magnetohydrodynamic
(MHD) equations.

Ideal MHD approximation(frozen flux) is not a very good
approximation for QGP produce in RHICE as diffusion time
(τ ' L2σ/4, σ ' 0.04T ∗) is smaller than 1 fm, while whole plasma
evolves upto 5-10 fm time.

However, for simplicity, we consider QGP in RHICE as an ideal MHD
fluid, in which conductivity at each spacetime point is considered to
be infinite.

∗Y. Yin, Phys. Rev. C 90, 044903 (2014); H.-T. Ding et al., Phys. Rev. D 83, 034504 (2011).

Shreyansh Shankar Dave (IMSc) RMHD Simulations 4 / 22



Ideal Relativistic Magneto-hydrodynamics Equations

The basic equations of relativistic magnetohydrodynamics:

Energy-momentum tensor for e.m. field in medium,

Tαβ
em =

1

4π
[Fαγ G

βγ − 1

4
FγδG

γδηαβ]. (1)

Fαβ : Field-strength tensor, Gαβ : EM induction tensor.

Energy-momentum tensor for matter part of ideal fluid,

Tαβ
pl = (ε+ P)uαuβ + Pηαβ. (2)

Here ηαβ = diag(-1,1,1,1).

Energy-momentum tensor for a pefect fluid interacting with e.m. field,

Tαβ = Tαβ
pl + Tαβ

em , (3)

where
∂αT

αβ = 0. (4)
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Ideal Relativistic Magneto-hydrodynamics Equations

Ideal RMHD Equations

Energy-momentum conservation equation

∂α

(
(ε+ pg + |b|2)uαuβ − bαbβ + (pg +

|b|2

2
)ηαβ

)
= 0 (5)

Maxwell’s equations

∂α(uαbβ − uβbα) = 0 (6)

Four-vector bα is related with the magnetic field and fluid velocity as,

bα = γ

(
~v . ~B,

~B

γ2
+ ~v(~v . ~B)

)
(7)

Total pressure of the fluid, p = pg + |~B|2
2γ2

+ (~v . ~B)2

2 .

Ref.: A. Mignone and G. Bodo, Mon. Not. R. Astron. Soc.368, 1040 (2006).
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Algorithm for solving RMHD Equations

For computational purpose, the RMHD equations can be conveniently
put in the following conservational form∗,

∂U

∂t
+
∑
k

∂Fk(U)

∂xk
= 0, (8)

where vector U is a collection of conservative variables,

U = (mx ,my ,mz ,Bx ,By ,Bz ,E ).

mk is the momentum density along k-th direction (using pg = ε/3),

mk = (
4

3
εγ2 + B2)vk − (~v . ~B)Bk . (9)

The total energy density,

E =
4

3
εγ2 − pg +

B2

2
+

v2B2 − (~v . ~B)2

2
. (10)

∗Ref.: A. Mignone and G. Bodo, Mon. Not. R. Astron. Soc.368, 1040 (2006).
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Algorithm for solving RMHD Equations

Fk are the fluxes along the xk = (x , y , z) directions,

Fx(U) =



mxvx − Bx
bx
γ + p

myvx − Bx
by
γ

mzvx − Bx
bz
γ

0
Byvx − Bxvy
Bzvx − Bxvz

mx


Fy ,z(U) are similarly defined by appropriate change of indices.
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Algorithm for solving RMHD Equations

U evolve with time following the conservation equation.

Independent variables, V = (~v , pg , ~B), are required when computing
the fluxes.

To recover V from U, define : W = 4
3εγ

2 and S = ~m. ~B,

E = W − pg +

(
1− 1

2γ2

)
|~B|2− S2

2W 2
(11)

| ~m|2= (W + |~B|2)2
(

1− 1

γ2

)
− S2

W 2
(2W + |~B|2) (12)

In the beginning of each time step, ~m, ~B and S are known. γ in
terms of W (only unknown) is,

γ =

(
1− S2(2W + |~B|2) + | ~m|2W 2

(W + |~B|2)2W 2

)− 1
2

(13)
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Algorithm for solving RMHD Equations

From EoS,

pg (W ) =
W

4γ2
(14)

Unknown quantity W can be found out from,

f (W ) = W − pg +

(
1− 1

2γ2

)
|~B|2− S2

2W 2
− E = 0 (15)

This equation is solved using Newton-Raphson method to get W.

Once W has been computed, one can get back γ and pg . Velocities
can be found by expression of mk ,

vk =
1

(W + |~B|2)

(
mk +

S

W
Bk

)
(16)
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Simulation details

We have performed (3+1)-d simulation for low energy collisions with√
s = 20 GeV and with Cu nuclei on 200× 200× 200 lattice with 0.1

fm lattice spacing.

Because of computational limitations we have taken radius of copper
nuclei as 4.0 fm with skin width 0.4 fm.

Optical Glauber and Glauber Monte-Carlo like initial energy density
are used for the simulations.

We have taken EOS of ideal relativistic gas pg = ρ/3 and zero
chemical potential for simplicity.

Initial central temperature is set to be ∼ 180 MeV.
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Simulation details

Magnetic field is produced by considering two oppositely moving,
uniformly charged, spheres and by taking appropriately Lorentz γ
factor for their motion. The initial magnetic field profile is calculated
at the thermalization time τ0 of the system.

We use Leap-Frog 2nd order method to solve ideal RMHD equations
numerically in (3+1)-d.

Initial fluid velocity in the transverse plane is taken to be zero.

We have taken longitudinal velocity profile ∝ z with suitable
maximum velocity at the edge of the plasma.

We have performed our calculations in the central rapidity bin.
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Flow Study by Fourier Analysis of fluid momentum
distributions in the Transverse Plane

The Fourier analysis of the azimuthal distribution function,

r(φ) =
δP(φ)

P
=

P(φ)− P

P
=
∑
n

(
an cos(nφ) + bn sin(nφ)

)
(17)

where, an = 1
π

∫ 2π
0 r(φ) cos(nφ) dφ, bn = 1

π

∫ 2π
0 r(φ) sin(nφ) dφ.

The flow is characterized by the magnitude of flow coefficients,
vn =

√
a2n + b2n and by direction of flow ψn (0 ≤ ψn < 2π/n), where,

an = vn cos(nψn) and bn = vn sin(nψn).

The Azimuthal Distribution Function

r(φ) = v0 +
∞∑
n=1

vn cos[n(φ− ψn)] (18)
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Speed of sound in ideal MHD fluid

Evolution of small perturbations (from the equilibrium value) in
energy density, velocity and magnetic field in ideal MHD fluid provide
three sound velocities for plane wave solution of perturbations with

wave vector ~k ,
1 ~k‖~B ⇒ MHD equations gives magnetosonic wave with velocity,

c2‖ = c2s (19)

2 ~k⊥~B ⇒ MHD equations gives magnetosonic wave with velocity,

c2⊥ = c2s + v2
A (20)

3 ~k‖~B⊥~v ⇒ transverse wave(Alfv én wave) moves with velocity vA.

cs =

(
∂pg
∂ε

)1/2

, vA ∼

(
B2
0

8πε

)1/2

(21)
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Effect of sound speed on fluid evolution in ideal MHD fluid

vx = c2s

(
xt

σ2x

)
, (22)

vy = c2s

(
yt

σ2y

)
. (23)

(J-Y Ollitrault, Eur. J. Phys. 29 (2008) 275-302.)
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Enhancement of elliptic flow due to magnetic field

Ideal Relativistic Magnetohydrodynamics Simulation result :

-4 -3 -2 -1 0 1 2 3 4

x (in fm)
-4

-3

-2

-1

0

1

2

3

4

y 
(i
n

 f
m

)

0

200

400

600

800

1000

1200

1400

1600

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5  6  7  8

v 2

Impact Parameter (fm)

√ s = 20 GeV

without magnetic field

with magnetic field, Btime = 0.4 fm

with magnetic field, Btime = 0.6 fm

Shreyansh Shankar Dave (IMSc) RMHD Simulations 16 / 22



At low impact parameter, magnetic field is well inside the plasma region,
hence argument of sound speed holds true.
At high impact parameter, extension of magnetic field much outside the
plasma region. Therefore according to the Lenz’s law, magnetic field
opposes the expansion of the conducting fluid in the x-direction.
b = 1 fm :
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b = 7 fm :
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εp Plot

εp =
T xx
pl − T yy

pl

T xx
pl + T yy

pl

=
v2x − v2y

v2x + v2y +
2pg

(ε+pg )γ2

(24)
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Power spectrum
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Enhancement of magnetic field due to fluctuation
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Magnetic flux can get reorganized due to evolution of density
fluctuations. This can lead to enhancement of magnetic field at some
spacetime points inside fluid.

Local vortices(turbulent dynamics) in QGP ⇒ Dynamo effect; local
enhancement of magnetic field.
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Conclusions

Magnetic field in the fluid can change the ellipic flow depending upon
the impact parameter of the collision. It can be very important in the
study of viscosity of QGP and can provide signal of the presence of
magnetic field.

We have found that magnetic field can be temporarily enhanced in
the fluid due to the evolution of fluctuations.
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Thank You !!
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