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MINLO’ T-CHANNEL SINGLE-TOP

+ ST: default POWHEG NLO t-channel single-top predictions
STJ: new t-channel single-top+jet NLO in POWHEG
STJ*: Minlo’ merged ST+STJ (without merging scale through enforcing unitarity)

+ Small differences between
ST/STJ and STJ* at
small scales, but this 1s
deep in the Sudakov
region, where higher
accurate resummation 1S
needed (and non-
perturbative effects play
an important role as well)

4+ Uncertainty band for ST

y12 1s too small -> artefact
of POWHEG
methodology
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4+ The preferred (i.e. most-accurate) predictions for t-channel single-top production

[S. Carrazza, RE, K. Hamilton and G. Zanderighi, arXiv:1805.09855] 2






EW CORRECTIONS

4+ Just as one can have a perturbative series in the strong
coupling, one can also include higher order corrections in

the electroweak (EW) coupling

+ By comparing the strength of the strong to the EW
coupling, one expects that NNLO QCD corrections of

similar importance to NLO EW corrections

O On top of that, EW corrections can be enhanced in
certain kinematical regions, where they can result in
several tens of percents:

¢ Close to EW resonances, radiation from decay
products results in sizeable changes

¢ When photon luminosity 1s important

¢ Large transverse) momenta or invariants result in
large EW corrections

% Important in BSM searches, particularly when
understanding shapes of backgrounds is a must
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EW VS STRONG CORRECTIONS

4+ When including higher order corrections in the strong coupling,
renormalisation (and factorisation) scale dependence is reduced 1n
the predictions

+ This 1s not the case for EW corrections: scale dependence 1s

effectively the same in LO and NLO EW computations
O Instead, scheme dependence is reduced

O Note that scheme dependence 1s typically not considered to be an
uncertainty: 1t 1s quite obvious which scheme 1s preferred
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4+ The EW sector of the SM has 3 independent parameters for the gauge
interactions. Historically taken to be o, Mwand Mz (with &« measured 1n
Thomson scattering, and Mw and Mz the on-shell weak boson masses)

O Other EW parameters are then predictions: vev, Gr, sin(Ow), A, p, ...

+ Alternatively, by using other input parameters, and updating the
renormalisation conditions accordingly, one resums some important
higher order contributions

O At LLO, scheme dependence is only through the numerical value of
the input parameters (which effectively means the value of «)



COMMON EW SCHEMES: OVERVIEW

{a(0), My, M,} — a(0) scheme 57, = 570 Whsn
2 Cw 2
1
{a(M,), My,, M,} - a(M,) scheme 0Ze|w(@2) = 0Ze|ag0) — s A(Q?)

1
5ZQ‘GM = 526‘04(0) — §AT =

(SZG‘ 2 —1 —@AP‘FATrem
a(mz) 9 SIZ/V

a(0) ~ 1/137 a(M,) ~ 1/128 al, ~ 1/132

As a rule of thumb, for a generic process at the LHC, the Gmu scheme 1s
superior and has to be preferred. However, 1f a photon is present in the Born

final-state, alpha(0) and the corresponding renormalisation should be used for
the associated QED vertex.
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NLO DISSECTION
4+ For example: consider di-jet production
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+ " "Is a bit of a misnomer:

NLOj and NLOj part of a "mixed" expansion
+ "Complete-NLO" takes all the LO and NLO contributions

in the mixed coupling expansion into account
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NLO DISSECTION

4+ For example: consider di-jet production

NLO; NLO2 NLO3; NLO;

+ " "Is a bit of a misnomer:

NLOj and NLOj part of a "mixed" expansion
+ "Complete-NLO" takes all the LO and NLO contributions

in the mixed coupling expansion into account



NLO DISSECTION
For example: NLO»

4+ For example: consider di-jet production has both "QCD" and
"EW" contributions

I 3 2
> E {?A % 1
P
NLO;, NLO; NLOs; NLO. R B
4+ "is a bit of a misnomer:

NLO2 and NLO3 part of a "mixed" expansion : - :

+ "Complete-NLO" takes all the LO and NLO contributions % E §
2 4 1

in the mixed coupling expansion into account



COMPLETE-NLO TO INCLUSIVE JET-Pt

[RE, Frixione, Hirschi,

Pagani, Shao, Zaro, 2017]
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+ Inclusive jet-pr

+ Expectation (assume 0s=0.1, 0=0.01):
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+ Size of corrections mostly follows
what one expects from the coupling
combinations

O Apart from the very far tail where
NLOs 1s slightly larger then one

would expect



COMPLETE-NLO TO INCLUSIVE JET-Pt

[RE, Frixione, Hirschi,
Pagani, Shao, Zaro, 2017]
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+ Inclusive jet-pr

+ Expectation (assume 0s=0.1, 0=0.01):
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+ Size of corrections mostly follows
what one expects from the coupling
combinations

O Apart from the very far tail where
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+ Single-top production (with on-shell top quark) 1s a purely EW
process. Hence, no difficulties in defining NLO QCD & EW

+ However, t- and s-channel differentiation needs to be revisited LO

O At NLOgw, Initial state photon results in diagrams that
contain both an t-channel and an s-channel W-boson (but
one can probably still use parton flavours for differentiation)

+ In the next results, no attempt in updating the differentiation ‘ '
NLOocp NLOgw

will be made. We will only consider the sum

O If necessary, one could always subtract the s-channel
contribution at LLO to obtain an NLO t-channel prediction

+ NLO EW corrections for single-top production first studied by
M. Beccaria et al. (2006), Mirabella (2008) and Bardin et al.
(2011).
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INCLUSIVE RATES

4+ For inclusive rates, the contributions from NLO EW corrections are

small (less than a percent)

4+ This does no longer hold for the (extreme) tails of distributions,
where the corrections can reach tens of percents
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+ Generate the process at complete-NLO

pp >e+vej)

4+ This includes single-top production,
but also background processes, with
possible interferences

+ Straightforward to generate, but
dithicult to interpret, assess
uncertainties and to make use of
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+ Generate the process at complete-NLO

pp >e+vej)

4+ This includes single-top production,

but also background processes, with

possible interferences

+ Straightforward to generate, but
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+ Let’s ignore possible interferences and focus again on single-top as signal:

LO3+ NLO3 & NLOg4
4+ To enhance single-top signal, typically (b-)jet-veto 1s applied
O require exactly one lepton, one b-jet, and one additional non-b-tagged jet

4+ In particular, the jet vetos enhance

the effeCtSI fI’OIn NLO COI‘I’eCthIlS pp — €+Uebj, PDFS:LUXQED17 (82200)
€eNnormous
o py = pp = Hr/2
4+ Including higher orders does Order o [fb]
not solve the problem. Also at LO QCD 4.616(4) T 0 2009070
NNLO QCD ([Berger et al.]) NLO QCD 2.75(3) 0 o s aoe)
the corrections remain large NLO QCD-+EW 2.57(3)41?):3?%?9122))
. +0.280(49.2%)
4+ Resummation through parton LO QCD + PS | 3.088(6) " 55711 7%)
shower improves the situation NLO QCD + PS | 2.36(2)1 0 100 5 0o)

considerably, however not available
for the EW corrections

[ Work in progress: RE, D. Pagani, 1. Tsinikos] 14
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4+ Lepton + b-jet invariant mass
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4+ left: Fixed order comparison; right: NLO vs NLO+PS (with QCD

corrections)

+ EW corrections small compared to other effects

[ Work in progress: RE, D. Pagani, 1. Tsinikos] 15
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DIFFERENTIAL DISTRIBUTIONS 2
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+ Angle between lepton, in the top rest-frame, and light jet: very

sensitive to spin correlations

+ Effects from parton shower again larger than from EW corrections

[ Work in progress: RE, D. Pagani, 1. Tsinikos] 16



DIFFERENTIAL DISTRIBUTIONS 3
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4+ Reconstructed to quark mass from lepton, b-jet and missing energy,

using W-boson mass constraint

+ EW corrections are of similar size as compared to effects from

parton shower

[ Work in progress: RE, D. Pagani, 1. Tsinikos] 17
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+ NLO EW corrections are a part of a family of NLLO corrections due to the
mixed coupling expansion of the perturbative series (complete-NLO)

4+ Automation of complete-NLO for all* relevant SM processes (e.g. in
MadGraph5_aMC@NLO v3_beta)

4+ Not covered: beyond NLLOqcp the distinction between jets, photons and
leptons becomes non-trivial without fragmentation functions (work in

progress)

+ Work-in-progress: consistent matching to parton showers when including
NLOEw corrections

+ EW corrections to single-top production are small, but enhanced in tails of
distributions. Also applying a jet-veto enhances the effects from higher-
order corrections enormously, but here the EW corrections remain smaller
than other effects
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