

Probing quantum interference in top production with the ATLAS detector

Christian Herwig, on behalf of the ATLAS Collaboration

5th CMS Single Top Workshop November 29, 2018

ttbar and single top processes with identical final states interfere! Total XS $\propto |\mathcal{A}|^2 = |\mathcal{A}_{t\bar{t}}|^2 + |\mathcal{A}_{tWb}|^2 + 2\text{Re}\{\mathcal{A}_{t\bar{t}}^*\mathcal{A}_{tWb}\}$

- Standard calculations treat top decays in the narrow-width approximation, factorizing the two processes
- *ad-hoc* combination schemes exist to estimate size of this effect
 - Difference of predictions usually assessed as an uncertainty
- Measurement constructed to maximize the interference effect!
 - Will provide the first direct test of these schemes

0805.3067 [hep-ph]

- Two alternatives initially proposed to define tW process at NLO:
 - Diagram Removal (DR): remove all ttbar diagram contributions
 - 'Ignores' interference effects, but not gauge-invariant
 - tWb prediction ~ $|\mathcal{A}_{tWb}|^2$
 - Diagram Subtraction (DS): construct a term designed to cancel ttbar contribution when Wb pairs on-shell
 - Includes interference, subtraction only works 'on average'
 - tWb prediction ~ $|\mathcal{A}_{t\bar{t}}|^2 + |\mathcal{A}_{tWb}|^2 + 2\text{Re}\{\mathcal{A}_{t\bar{t}}^*\mathcal{A}_{tWb}\} \Phi$
 - "tt subtraction term" ブ
- More recent proposal of "DR2" ~ $|A_{tWb}|^2 + 2\text{Re}\{A_{t\bar{t}}^*A_{tWb}\}$ 1207.1071 [hep-ph], 1607.05862 [hep-ph]

Interference models (II)

- Recently another solution became available 1607.04538 [hep-ph]
- Ivivbb process implemented in Powheg (NLO matched to PS)
 - Full NLO, with no narrow-width approximation
 - Includes cross-talk between top production and decay
 - Showering is "resonance-aware", preserving top mass
- Inclusive treatment → interference is 'automatically' included
- Analysis plan:
 - Use DR, DS to design analysis and estimate uncertainties
 - Compare DR2, Powheg-Res Ivivbb to the unfolded data

C. Herwig (Penn) — Interference in Top Production with ATLAS

Interference models (II)

Recently another solution became available 1607 04538 [hep-ph]

This effect is measured in a new result from ATLAS:

Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector Phys. Rev. Lett. 121 (2018) 152002

All plots can be found on the public webpage

O

- Define signal as the the combined ttbar+tWb process
- Differential measurement of an interference-sensitive variable
 - Scanning tWb/ttbar purity probes interference when both important
 - Interference depends on interplay between ${\cal A}_{tar{t}}$ and ${\cal A}_{tWb}$
- Idea: design observable differentiating the processes' resonant structure

For ttbar events with correctlyidentified b-jets and leptons

 \mathcal{V}

If the "A pairing" is correct: Both $m_{b\ell}^{1A} < m_t$ and $m_{b\ell}^{2A} < m_t$ and thus $\max\{m_{b\ell}^{1A}, m_{b\ell}^{2A}\} < m_t$

 ℓ_2

 \mathcal{V}

For ttbar events with correctlyidentified b-jets and leptons

 \mathcal{V}

If the "A pairing" is correct: Both $m_{b\ell}^{1A} < m_t$ and $m_{b\ell}^{2A} < m_t$ and thus $\max\{m_{b\ell}^{1A}, m_{b\ell}^{2A}\} < m_t$

> If the "B pairing" is correct then must have:

> $\max\{m_{b\ell}^{1B}, m_{b\ell}^{2B}\} < m_t$

 ℓ_2

 \mathcal{V}

Consider now tWb events: If the "A pairing" is correct: One of $m_{b\ell}^{1A}$ or $m_{b\ell}^{2A}$ must be $< m_t$ But, can have $\max\{m_{b\ell}^{1A}, m_{b\ell}^{2A}\} > m_t$

 m_t

Thus:

 $m_{{\scriptscriptstyle B} \scriptstyle \ell}^{
m minimax}$

Consider now tWb events: If the "A pairing" is correct: One of $m_{b\ell}^{1A}$ or $m_{b\ell}^{2A}$ must be $< m_t$ But, can have $\max\{m_{b\ell}^{1A}, m_{b\ell}^{2A}\} > m_t$

 m_t

Thus:

 $m_{{\scriptscriptstyle {\cal h}}^{
m minimax}}^{
m minimax}$

ATLAS

Inspiration from searches (aside)

- Stop searches suppress SM ttbar with similar tools
 - Inspiration for this measurement
- These "stransverse mass" variables (m_{T2}) are analogous to m_{bl}^{minimax}
 - Cut at top mass to remove ttbar, keeping SUSY signal

Nov 29, 2018

Events / 0.3

20-ATLAS

18

16F

14

12E

10

8

6

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

2.5

2

1.5

3.5 4.5 3 $\Delta R(b_1, b_2)$

Stop searches suppress SM ttbar • with similar tools

- Inspiration for this measurement
- These "stransverse mass" variables (m_{T2}) are analogous to $m_{bl}^{minimax}$
 - Cut at top mass to remove ttbar, keeping SUSY signal

Inspiration from searches (aside)

GeV

Events / 20

40

20

ATLAS

STCR1

³⁰ - <u>StopIL</u>

<u>3.2/fb</u>

 $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$

- Data

tt 2L

 $t\bar{t} 1L1\tau$

Total SM

Single Top W+iets

Nov 29, 2018

C. Herwig (Penn) — Interference in Top Production with ATLAS

Prediction/Data

ATLAS Selection, background estimation (I)

- Select events with two well-measured leptons and AntiKt4 jets
 - Require that 2 jets pass a tight b-tag requirement (60% eff)

و ک

Events

- Tight tag reduces ttbar with incorrectly tagged jets
- Z+b(b) background taken from data (define a m_{II} CR)
 - For same-flavor events, require |m_{II}-m_Z| > 15 GeV
- Select opposite-charge leptons
 - Fake lepton estimate from same-charge events
 - Negligible in signal region

15

Nov 29, 2018

Detector-level results

- Signal prediction from Powheg+Pythia6
 - ttbar is 'hvq'
- Predictions given for both the DR and DS schemes for tW
- High purity of tW events in the tail of the distribution
- To allow for additional comparisons, the data are unfolded to particle level...

Particle-level selection

- Reminder:
 - Signal process to unfold is tt+tWb combination
 - all other processes are subtracted (including tt+HF)
- Particle-level selection is "the same" as at detector-level
 - Leptons "dressed" with FSR photons
 - Jets are built from stable truth particles (no muons or neutrinos)
 - b-tagged if a B-hadron is ghost-associated
 - Maintain all fiducial cuts as detector-level selection, including the $m_{\rm II}$ window veto
- Unfold to particle level using the Bayesian iterative method

- Uncertainties assessed by varying the model used to unfold the data
- Dominant contributions are due to top modeling
 - ttbar, tW, tt+HF
 - Difference due to unfolding with DR vs. DS is small!!
- Important experimental uncertainties: jet energy scale and b-tag efficiency
- Statistical uncertainties important in extreme bins

- Powheg-Pythia8 lvlvbb describes the data well across the full spectrum
- Powheg+Pythia8 (hvq) models the ttbar core well, but...
 - In tail, the DR and DS predictions diverge
 - Consistent with data at ~2σ level
 - Difference brackets the data for most bins
- DR2 significantly underpredicts data in the tail

- Additional comparisons:
 Powheg+Pythia6 DR and DS samples used for unfolding and all detector-level comparisons
 - Similar to the Pythia8 predictions
- Powheg+Herwig++ samples used to assess parton shower (PS) uncertainties
 - PS effects most significant below the top mass

- Additional comparisons:
- Madgraph samples allow for a direct comparison of DRI versus DR2
- Poor modelling by DR2 due to interference scheme and not the choice of generator (MG vs. Powheg)
- Also shown:
 - Madgraph+H++ sample used for generator comparison

Additional comparisons: [1/GeV] Data, stat. uncertainty 10⁻² LO Madgraph samples Full uncertainty • MG5_aMC+Pythia8 WWbb (LO) generated with and MG5_aMC+Pythia8 tt+tWb (LO) without interference ** included $\overline{\mathbf{O}}$ Used by searches to -10 estimate true effect size 10^{-4} when DR/DS difference ATLAS is large √*s*=13 TeV, 36.1 fb⁻¹ 10^{-5} $pp \rightarrow l^{\dagger}\bar{l}bb+X$ Model/Data 2

100

200

300

0

400

m_{bl}^{minimax} [GeV]

- Present the first measurement of the combined ttbar+tWb process in a region sensitive to their interference
- While significantly different from each other, the DR and DS predictions are each within 2 sigma of the data
 - The DR/DS difference brackets the data in most bins
 - Assessing uncertainty from DR/DS is safe, if conservative
- The generator explicitly including interference (Powheg-Pythia8 lvlvbb) shows excellent agreement over the full spectrum
- This measurement provides a unique constraint on interference models and will guide future mode development and tuning

Backup

Nov 29, 2018

C. Herwig (Penn) — Interference in Top Production with ATLAS

25

arXiv:0805.3067[hep-ph]

