A new framework for the ALICE-Masterclasses

Jonas Toth CERN Summer Student

23. August 2018

Jonas Toth, CERN Summer Student

Refactoring ALICE Masterclasses

Increase public outreach

- deploy everywhere
- if possible translate to local language
- more ALICE MasterClasses in one package
- Strangeness
- Raa
- ► J/Psi
- Allow other experiments and institutes to join
- address classical software topics

- Increase public outreach
- deploy everywhere
- if possible translate to local language
- more ALICE MasterClasses in one package
- Strangeness
- 🕨 Raa
- J/Psi
- Allow other experiments and institutes to join
- address classical software topics

Jonas Toth, CERN Summer Student

- Increase public outreach
- deploy everywhere
- if possible translate to local language
- more ALICE MasterClasses in one package
- Strangeness
- Raa
- ► J/Psi

Allow other experiments and institutes to join

address classical software topics

Jonas Toth, CERN Summer Student

- Increase public outreach
- deploy everywhere
- if possible translate to local language
- more ALICE MasterClasses in one package
- Strangeness
- Raa
- ► J/Psi
- Allow other experiments and institutes to join
- address classical software topics

- Version from Christian Holm Christensen
- Repository on gitlab.cern.ch
- Macro-based solution with Strangeness and Raa Classes
- initial translation facilities

Starting point

Jonas Toth, CERN Summer Student

Refactoring ALICE Masterclasses

- Provide a way to easily add a new language
- translate whole program
- added German translation, Dutch is WIP
- file-based solution does not require programming skills
- static analysis for consistency
- semi-automatic snippet translation through Google Translate
- **Groups are encouraged to add translations**

- Provide a way to easily add a new language
- translate whole program
- added German translation, Dutch is WIP
- file-based solution does not require programming skills
- static analysis for consistency
- semi-automatic snippet translation through Google Translate
- Groups are encouraged to add translations

Jonas Toth, CERN Summer Student

- Provide a way to easily add a new language
- translate whole program
- added German translation, Dutch is WIP
- file-based solution does not require programming skills
- static analysis for consistency
- semi-automatic snippet translation through Google Translate
- Groups are encouraged to add translations

/// translation/EntryPoint/Description.en.html
R"(
<html>
<head>
</head>
<body>
<h1>ALICE Master Class</h1>

Content of the user-facing document. Shortened... </body> </html>)"

/// translation/EntryPoint/keys_gui_trans.txt.en

/// Key-Value store for English.
/// every language will define its own set of strings.
RegisterText("GUISettings", "Settings ...");
RegisterText("GUILabelClassConfig", "Start your engines ...");
RegisterText("GUIChooseLanguage", "Choose your language ...");
RegisterText("GUIChooseClass", "Select master class ...");
RegisterText("GUIChooseExercise", "Select exercise ...");
RegisterText("GUIChooseExercise", "Select exercise ...");
RegisterText("GUIChooseExercise", "Select exercise ...");
RegisterText("GUIChooseExercise", "Select exercise ...");

```
/// src/EntryPoint/GUITranslation.h
/// Provide a class that will provide all available strings
/// in English.
struct TGUIEnglish : Utility::TLanguageProvider {
  TGUIEnglish(Utility::ESupportedLanguages lang = Utility::English)
    : TLanguageProvider(lang) {
      /// Registering a Key-Value store for
    /// small strings that are translated
    std::cerr << "Registering English GUI Selection\n";</pre>
    #include "EntryPoint/keys_gui_trans.txt.en"
    /// Statically compile in whole translated HTML files.
    RegisterText("Description",
    #include "EntryPoint/Description.en.html"
    );
  }
};
```

Jonas Toth, CERN Summer Student

/// src/EntryPoint/GUITranslation.h /// Makes the strings available as methods. /// This ensures on compile-time that only existing strings are /// used and avoids common errors like typos in the Key-Value-Access. struct TGUIEnglish : Utility::TLanguageProvider { TGUIEnglish(Utility::ESupportedLanguages lang = Utility::English); /// Create all Methods to request the corresponding text snippets. LANG_KEY(GUISettings) LANG_KEY(GUIDataSource) LANG_KEY(GUILabelClassConfig) LANG_KEY(GUIChooseLanguage) LANG KEY(GUIChooseClass) LANG KEY(GUIChooseExercise) LANG_KEY(Description) LANG KEY(GUIExitButton) };

```
/// src/EntryPoint/GUITranslation.h
/// Adding another translation in code is very easy.
/// The 'LANG_TRANSLATION' macro creates a new class that inherits
/// all methods from the English pendant and only replaces the
/// string registrations.
LANG_TRANSLATION(TGUI, German)
{
    std::cerr << "Registering German GUI Selection - EntryPoint\n";
    #include "EntryPoint/keys_gui_trans.txt.de"</pre>
```

```
RegisterText("Description",
#include "EntryPoint/Description.de.html"
);
```

Jonas Toth, CERN Summer Student

3

Browser Eve		
Navigation	Viewer 1 Mehrtachansicht Ereignismerkmale 🗟 Analyse 🗟	
	400 -200 0 200 400	600
	Anleitung 🛛 🔿 🔿	200 -
ALICE	Einführung	
Drucken Exportieren	Herzlich Wilkommen in der ALICE Ereignisanzeige. Hier finden Sie alle Werkzeuge die Sie benötigen um Köllisionsereignisse zu analysieren.	0
Beenden	Benutzerschnittstelle	-200 -
Anleitung	Auf der rechten Seite befinden sich 3 Ereignisanzeigen.	-
Anleitung	Die anderen Tabs sind Viewer 1. welcher die Ereignisse in einer einzelnen 3D-Ansicht zeigt, Event Characteristics mit Histogrammen und Analysis in dem R _{AA} berechnet wird.	- 400 -
Ereignisse bearbeitet: Vorheriges Akbeile Naechster 1/34 ¢ pp. 7 TeV, B+0 T Ereignis analysiert! Ereignisnavigaton 0	Auf der linken Seleb leftlodet sich die Navigation , mit Rogenden Abschnitten. Einflörung Der Bertreich und diese Anweitungen Terre Daraugebertein Nater die Pfelle um zweichen den Eregnissen zu wechseln. Sowehl das aktuelle Ereignis als auch die Anzahl darauf Ereignisse wird daragedacht.	100 100 100 100 400
Anzeige	Dieser Abschnitt erlaubt es folgende Elemente zu aktivieren/deaktivieren.	200 -
Cluster	Interaktionspunkt - Punkt der Kollision Clusters	
Bahnen	rekonstruierte Punkte im Detektor an denen das Partikel war Bahnen:	0 -
Zeige nur primaere Bahnen Geometrie Achsen	rekonstruierte Flugbahn der Partikel im Detektor Nur primäre Bahnen zeigen: verringert die Anzähl der Bahnen auf die Bahnen aus dem Interaktionspunkt	-200
Hintergrund	Geometrie	-400
Enzyklopaedie	-600 -400 -200 0 200 400	600
Autgaben	v	
Primaerb. Positive Pr.	Tasks Zaehler	
Sekundaerb. Max. Pt Pr.		

Jonas Toth, CERN Summer Student

Refactoring ALICE Masterclasses

Refactoring

Structural Changes of Code without affecting behaviour.

- Missing tests can not catch random breakage
- ► To refactor you need to test, to add tests you need to refactor.
- **Obstacle** every masterclass was copy&pasted

Refactoring

Structural Changes of Code without affecting behaviour.

- Missing tests can not catch random breakage
- ► To refactor you need to test, to add tests you need to refactor.
- Obstacle every masterclass was copy&pasted

Refactor to what?

SOLID Principles

- Single Responsibility Principle
- Open/Closed Principle
- Liskov Substitution Principle
- Interface Segregation Principle
- Dependency Inversion Principle

What we want

```
/// Collect statistics over all events in the dataset.
class TRaaStatistics
{
    public:
    void AddEventStatistics(const gsl::span<TEveTrack* const> Primaries);
    void AddSecondaryMultiplicity(Int_t NumberSecondaries);
```

```
void ClearStatistics();
```

```
const TH1D& HistMultiplicity() const { return fMultiplicityHist; }
const TH1D& HistMultiplicityMinPt() const { return fMultHistMinPt; }
const TH1D& HistMultiplicitySecondaries() const { return fMultHistSec; }
const TH1D& HistPt() const { return fPtHist; }
const TH1D& HistCharge() const { return fChargeHist; }
const TH1D& HistPhi() const { return fPhiDist; }
};
```

What we don't want

```
/// Just the public interface, a lot more coupling happens through
/// implicitly shared state.
class Counter : public TGMainFrame
ł
 public:
 Bool_t fEnableCharge;
  Bool t fAllowAuto:
  Double_t fHighestPt;
  TEveTrack* fHPtTrack:
  Int_t fSecondaries:
  Counter(const TGWindow* p, UInt_t w, UInt_t h,
          ECollisionSystem collSys, TTrackAnalysis* hists,
          Bool_t allowAuto = false):
  TGNumberEntryField* AddField(TGCompositeFrame* cf, TGLayoutHints* lh,
                               Bool_t isInt = false, Bool_t neg = false);
 void Build():
 111 ...
```

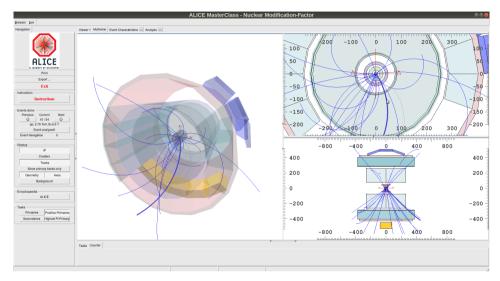
Jonas Toth, CERN Summer Student

What we don't want

```
111 ...
 void Reset(ECollisionSystem collSys, Bool_t ResetAll = true);
  void DoExit() { this->UnmapWindow(); }
  void CountAutomatic();
  void Reset(Bool_t ResetAll = true);
  void Instructions():
  void Fill(Double_t px, Double_t py, Double_t pz, Int_t charge);
  void IncreaseMult(Double_t pt);
 void Publish();
  void FillHistAuto(Double_t pt, Double_t q, TEveTrack* track,
                    Double_t phi):
 /// End of interface
};
```


 criticism was a too monotonic experience when selecting only primary tracks

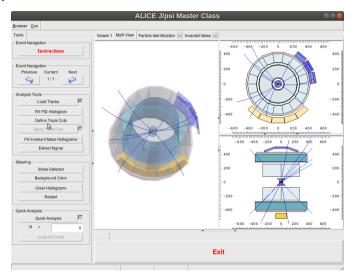
- Implement four tasks to choose from
- distinguish between primary and secondary particle
- distinguish between charges
- estimate particle momentum from curvature
- explore more physics



- criticism was a too monotonic experience when selecting only primary tracks
- Implement four tasks to choose from
- distinguish between primary and secondary particle
- distinguish between charges
- estimate particle momentum from curvature
- explore more physics

- criticism was a too monotonic experience when selecting only primary tracks
- Implement four tasks to choose from
- distinguish between primary and secondary particle
- distinguish between charges
- estimate particle momentum from curvature
- explore more physics

Extend Raa-Class


Jonas Toth, CERN Summer Student

Refactoring ALICE Masterclasses

New J/Psi Masterclass

- Implemented from GSI
- right now just a code dump
- can be run the same way as Strangeness and Raa

New J/Psi Masterclass

Jonas Toth, CERN Summer Student

Refactoring ALICE Masterclasses

Deployment and Usage

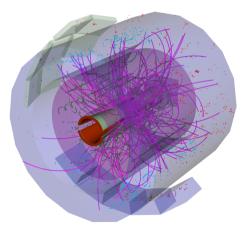
ROOT6 to be future proof

compiled executable (only Linux at the moment)

- requires only ROOT6 installed on the system
- CMake based process
- all masterclasses in one package
- ► Goal to have Linux AppImage

Deployment and Usage

- ROOT6 to be future proof
- compiled executable (only Linux at the moment)
- requires only ROOT6 installed on the system
- CMake based process
- all masterclasses in one package
- ► Goal to have Linux AppImage


Deployment and Usage

- ROOT6 to be future proof
- compiled executable (only Linux at the moment)
- requires only ROOT6 installed on the system
- CMake based process
- all masterclasses in one package
- Goal to have Linux AppImage

- ▶ jsROOT implements Event-Display for browser
- Link to Example
- Web-based Masterclasses instead of ROOT-GUI
- the basic architecture and structure can be reused
- ► WebAssembly, ASM.js and Emscrippten allow code-reuse

Outlook jsROOT

Jonas Toth, CERN Summer Student

Refactoring ALICE Masterclasses

Questions

Finalizing my work

- automatically generating packages containing everything
- start refactoring J/Psi as well
- double-check all elements of the masterclasses to detect breakages