

Setting the scene | Motivation

- The motivation for closer scrutiny of MC generation resource usage is clear:
- The current model does not scale much beyond Run 3

Setting the scene | Motivation

- The motivation for closer scrutiny of MC generation resource usage is clear:
- The current model does not scale much beyond Run 3
- The fraction of resources dedicated to event generation is about to dramatically increase

ATLAS Preliminary. 2028 CPU resource needs Because fast detector simulation will be used for a much larger fraction of events.

Generator implementation basics

- All generator code is external software for experiments.
- Interface packages are written to make the input and output Athena-friendly.
- Different generator codes have different...
 - physics processes
 - available precision
 - technical features
 - input/output needs

- Various possible configurations result in many different running modes
 - Also requires flexibility in the software integration and production system configuration.

Current generator usage | Total events and CPU

- Majority of CPU consumption comes from Sherpa2.2 V+jets setups.
 - But these are by far our largest (3.2B events) and most precise (V+0,1,2j@NLO+3,4j@LO) samples

Current generator usage | Avg CPU/event

	Avg CPU/evt
Evgen	~80 s
FullSim	~245 s
FastSim	~45 s
Reco	~60 s

- Average CPU/event by dataset
- Each entry is a single dataset
- The numbers have not been corrected for e.g. filter efficiencies
- ME generators also include showering
 - Sometimes only showering... but it's hard to separate
- The average across all samples is ~80s/event
- But have many examples where event generation is slower than full simulation...
 - A strong indication that this is something to improve!

CPU time/event for 2015 MC event generation at $\sqrt{s} = 13$ TeV (All physics processes included, correlations with process complexity and filter efficiencies not taken into account)

Recent improvements

- We have seen very impressive increases in generator precision over the last years
- NLO merging
- NLO EWK corrections
- NNLO QCD corrections in some cases
- Systematic weights
- The implementation of systematic ME scale, PDF and shower scale variations has significantly improved the efficiency of our event generation!
- This work is of course greatly appreciated!

Gen HSF WS Josh McFayden 26/11/2018

Negative weights

- We cannot afford to run full simulation on samples with negative weight fraction >25%
 - Starting to become a deal-breaker for some setups
 - ▶ High statistics W/Z samples for precision analyses cannot currently use MC@NLO-like matching schemes.

Precision vs CPU

- The increase in precision goes hand-in-hand with increases CPU consumption.
- If we want increased precision in future we will need even more CPU!

ttbar production:

Sample	Fraction of events with neg. weights [%]
Sherpa (lepton+jets)	20.5
Sherpa (lepton+jets)	20.4
Sherpa (dilepton)	20.4
Sherpa ttbb (lepton+jets, CSSKIN, 4FS)	24.4
Sherpa ttbb (lepton+jets, CMMPS, 4FS)	25.7
aMC@NLO+Py8 (lepton+jets)	23.7
aMC@NLO+Py8 (dilepton)	23.7
aMC@NLO+Py8 (FxFx, 70 GeV)	28.4
aMC@NLO+H++ (4FS, ttbb)	37.2
Powheg+Herwig7 (lepton+jets)	0.4
Powheg+Herwig7 (dilepton)	0.4

- Efficiently populating extreme regions of phase space
- Filtering and generating events in extreme regions of phase space can be problematic...

Possible routes out

- Work ongoing in the generator/tools groups to both increase the CPU efficiency and reduce negative weights
- But this work is unglamorous and does not get you papers or permanent jobs...
- Can experiments do more to help?
 - At the end of the summer ATLAS and CMS MC generators conveners asked for feedback on the possiblity to fund positions in this area.
 - Feedback was generally positive
 - There were quite strongly differing opinions on the implementation & shared fears on finding the right candidates.
 - Hopefully we can discuss more tomorrow morning...
- Sacrifice speed for modelling/precision?
 - Choose the faster generator if there is some big disparity between generators?
 - But what are the speeds?! See next slide for some very preliminary benchmarking.
- Could consider some form of reweighting lower precision samples to higher precision
 - ▶ E.g. LO multileg —> NLO+LO multileg (also works to solve negative weights).

Generator benchmarking | W+jets

- We are starting to develop apples-to-apples comparisons in ATLAS software framework.
 - All tests run same on "bare metal" machine.
 - 10 x 5-10k event runs are averaged.

- Caveats
- Not perfectly optimised for matching efficiency.
- MG5_aMC used internal PDF, not LHAPDF.
- Memory consumption likely not truly representative.

Generator benchmarking I ttbar

Further studies:

- Check w/wo EvtGen/LHAPDF.
- Check w/wo systematic variation weights.

- Check with phase-space slicing.
- More...?
 - We are just starting and very happy to get feedback! Josh McFayden | Gen HSF WS | 26/11/2018

Infrastructure?

- Possible reversal of strategy ordering:
- ATLAS/CMS could develop a common computing scheme/framework for MC generation to which the MC collaborations could adapt.
- More simply, one could ask e.g. "will evgen be predominantly run of CPUs or GPUs in 2028?"
 - Likely driven by next HPCs need to be flexible?
- > ATLAS & CMS sharing samples?
- Clearly this would involve some complications and likely compromises.
- But would trivially gain a factor of two in sample size!
- Disk resources are also under severe pressure
 - Likely not a problem unless 100 PBs are written out...

Summary

- Despite many welcome improvements in MC event generator precision and functionality over the last years the current model is not going to scale well...
- There is surely some "low-hanging fruit" for efficiency improvements.
 - Event generation has probably not seen as much scrutiny as other steps until now.
- Optimisation of existing generator codes could surely improve this situation.
- The best way to achieve this can be discussed during the workshop!
- ▶ Efficient optimisation will require advance knowledge of what the computing infrastructures and workflows will look like for HL-LHC.
- Experiments may have to compromise in order to get the MC statistics required.
- For all the above, by starting early (now) hopefully anything is possible!

Current generator usage | Avg CPU/event

	Avg CPU/evt
Evgen	~80 s
FullSim	~245 s
FastSim	~45 s
Reco	~60 s

- Average CPU/event by dataset
 - Each entry is a single dataset
- The numbers have not been corrected for e.g. filter efficiencies
- ME generators also include showering
 - Sometimes only showering... but it's hard to separate
- The average across all samples is ~80s/event
- But have many examples where event generation is slower than full simulation...
- A strong indication that this is something to improve!

CPU time/event for 2015 MC event generation at $\sqrt{s} = 13$ TeV (All physics processes included, correlations with process complexity and filter efficiencies not taken into account)

Deedback on possible dedicated post(s)

In general the proposal was welcomed and agreed that it would be useful.

Structure

- Needs international coordination (some independent efforts already in place or starting, e.g. SciDac in US)
- ▶ Being evenly distributed across generator groups is important but may be hard in practise
 - ▶ Completely different code structures. Would certainly need supervision from authors.
 - ▶ But, no real concern about sharing information...

Software

- ▶ Authors are aware of code shortcomings but not sufficient time/expertise to improve would welcome external effort.
- Possible reversal of strategy ordering:
 - ▶ ATLAS/CMS should develop a common computing scheme/framework for MC generation to which the MC collaborations could adapt
- Possibility for CMS/ATLAS to have a framework which would allow to share common (large) MC sets.

Physics

Negative weight fractions need physics background to solve - process dependant

People

- ▶ General agreement this will be hard! No consensus on how best to find the right people...
 - ▶ To get good candidate these should be long-term posts.
 - ▶ Suggestion to make this a "secondment" from experiment with at least 50% FTE spent on these projects (unlikely to come from theory)
 - Externally funded PhD projects under joint supervision between people from Computer Science departments and theory?
 - ▶ Graduate student in computer science who wants some experience with real problems.
- Strong agreement that close interaction/supervision from authors would be necessary
- General agreement that having two positions, one predominantly on physics-related topics and one on core software would be useful.

Integrations

- Ballpark figures for the integration times
 - Run on different machines/clusters etc.
- Completely negligible compared to event generation and showering
- W+0,1,2j@NLO
- Sherpa = 5h on 96 cores
- MG5_aMC = 2h on 16 cores
- W+0,1,2,3,4j@LO
 - Sherpa = 3.5h on 96 cores
 - MG5_aMC 8h on 32 cores

Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz