

CMS Needs and Concerns for Physics Event Generators

Efe Yazgan for the CMS Collaboration

Physics Event Generator Computing Workshop, 26-27 November 2018, CERN

Event Modeling in CMS

- Most measurements at hadron colliders rely on large scale Monte Carlo production.
 - Understanding and interpretation of data test SM with more precise and complex calculations.
 - Many cases in which irreducible backgrounds extrapolated to signal phase-space regions for new physics searches through predictions using MC simulations.
- At the LHC, most events are accompanied by additional hard jets from initial or final state QCD radiation.
 - SM measurements
 - Many searches select or veto these extra jets.

NLO/multi-leg/merged MC generators needed for high accuracy predictions for the LHC

Matrix Element Generation

- Multi-leg LO and NLO consistently matched to the parton shower
- LO: Most commonly used in CMS: MG5_aMC@NLO+Pythia8 with MLM matching
 - Most complex process up to 4 additional jets
- NLO:
 - Most commonly used in CMS: MG5_aMC+Pythia8 with FxFx merging
 - Most complex process up to 2 additional jets at NLO.
 - POWHEG: Commonly used (e.g. almost all top quark samples)
 - Most complex process: MINLO-NNLOPS (ggH->WW) w/ 0-jet at NNLO, 1-jet at NLO, 2-jet at LO and w/ finite quark mass effects.

CMS Software

- Modular C++ application used for event generation, detector simulation, reconstruction and analysis
- Steered with python-based configuration files
- Input/output: root-based EDM files
 - Store run-, lumi-section-, and event-level data
- Links directly to « externals »
 - Externally maintained fortran, python, C, C++, ... codes (e.g. parton shower codes Pythia, Herwig, ...)
 - External code versions locked to CMSSW release

CMS Central Monte Carlo Sample Production

- Python-based tools for submission of CMSSW jobs to grid resources
- Similar mechanism available for users to submit analysis jobs
- CMSSW + externals available on worker nodes through CVMFS
 - distributed disk system for providing code and libraries to interactive nodes and grid worldwide.

Central Production of LHE Events

- MG5_aMC, Powheg, ... called from CMSSW through the externalLHEProducer module
- LHE generator code difficult to include as an external, since each process requires dedicated and sometimes dynamically generated libraries.
 - Solution: gridpacks

Gridpacks

- Pre-generated and compiled code with initial phase space integration results stored in a tarball (with fixed model/run parameters in the standard case).
- Contribution from each subprocess is calculated with high precision.
- The gridpack jobs randomly include subprocesses based on their relative contributions to the total cross section.
- Inputs to generated gridpack: Number of events and the random number seed.
- Placed in CVMFS and accessed by remote jobs
- Gridpack location a parameter of the externalLHEProducer module
- Gridpacks produced in batch systems: cms-connect at Fermilab, and CERN condor now, ...
- In production, significant time spent in untarring the gridpacks
 - MG5_aMC O(100) x slower than Powheg (MG < Sherpack < Powheg)
 - May be less of a problem starting from MG5_aMC 2.6.3
- Number of threads in gridpack production is always 1

Run II GEN Production

Run II:

- → GEN not stored for physics samples in disk. GEN-SIM re-produced whenever needed.
- → Generators ~1-10% of the total CPU
 - → Variation due to LO, NLO, NNLO, complexity of the process, or different methods of calculation.
 - → Most BSM samples at this point are simulated at LO.

- 15 B (+ some other production campaigns ~ 20 B) in 8 months
 - GEN-SIM-DIGI-RECO ~85 sec/evt
 - 60k cores (~1/3 of the CMS production power)
- Multi-leg LO
 - up to ~10s/gen-evt
 - ~10% matching efficiency → 100s/fullsim-evt
- Multi-leg NLO
 - up to ~30s/gen-evt
 - ~30% matching efficiency → 100s/fullsim-evt
 - Large fraction of negative weights of up to ~40% → larger samples!

Beyond Run II

- Generation will only be the 3rd CPU consumer after reconstruction and detector simulation, however
- much larger samples and disk space to match data statistics
- precision measurements; top mass, W mass, weak mixing angle, ...
- larger alternative samples for systematic uncertainties
- precise differential distributions and tails of the phase space regions.
- more precise calculations: NLO, NNLO, and beyond depending on the process
 negative weights
- NLO QCD x EWK corrections with high multiplicity final states, for both virtual and real contributions + parton shower

- → requires much larger samples, improved PDFs, ...,
- → and RIVETized (or similar) data at the extremes of the phase-space regions to improve modelling
 - → To make it technically very easy, CMS provides particle-level objects in nano-aod – and simple to produce from MiniAod
 - ightarrow GenJets w/ hadron-flavor info
 - → Dressed leptons

Use of event weights for Systematic Uncertainties

- Used since sometime in Matrix Elements for PDF and perturbative QCD scales
- Recent Pythia8/Herwig7 versions → weights for parton shower systematics
 - Used in 2017 CMS top quark samples (Pythia8)
 - Used in all 2018 CMS samples that use Pythia8 as shower.

Can never be calculated with weights?

What else can be calculated with weights?

Source	Handle	Weights	Variation	Note/Reference	Dedicated studies
Shower scales	ISR scale (SpaceShower:renormMultFac) FSR scale (TimeShower:renormMultFac)	YES	0.5-2.0 0.5-2.0	FSR variations can be scaled down by √2 from LEP	TOP-15-011, TOP-16-021 TOP-17-13, TOP-17-015,
ME-PS Matching	hdamp	No	hdamp=1.58m _t +0.66-0.59 m _t	see TOP-16-021	Starting scale variations for MG5_aMC@NLO
Soft QCD	UE parameters	No	UE tune up/down	See TOP-16-021 MPI & CR strength doesn't affect resonance decays	TOP-17-015 GEN-17-001
Color reconnection (odd clusters)	MPI based, QCD-inspired, gluon move	No	different models	CR affecting resonance decays	TOP-17-13, TOP-17-015
Fragmentation	momentum transfer from the b-quark to the B hadron: $x_b=p_T(B)/p_T(b-jet)$	YES	Vary Bower-Lund parameter within uncertainties from LEP/SLD fits	see TOP-16-022 (re-weight x _b)	
Flavor response/ hadronization	Pythia vs Herwig	No	Vary the JES independently per flavour for light, g, c, b.		
Decay tables	B semi-leptonic BR	YES	vary semileptonic BR +0.77%/-0.45%	re-weight the fraction of semi-leptonic b jets by the PDG values (scale Λ_b to match PDG)	

MG5_aMC Bias weights for LO and NLO

O. Mattelaer, arXiv:1607.00763

- Uses an event sample generated with a certain model and associates the original events with a new sample corresponding to a different model with weights.
- The method requires the original and the alternative model significantly contributes to the same phase space region.
- Can be used (w/o performing full simulation)
 - to enhance the number of events in the desired phase-space region.
 - to directly test the effect of an alternative model (directly modifying the underlying matrix element)

doesn't work well if it covers a large phase space:

- → Decreasing weights in a particular phase space region increases it in another region.
- → This is OK in some cases but when large and small weights, difficult to stitch, e.g. W and DY.
- → Instead, use Njet, VpT binned, unbiased samples more flexible to fill an insufficiently populated part of the phase space.
- → Not much exercised in BSM processes yet

- Understanding timing for each generation step in ATLAS and CMS (effort already started).
- Significant reduction of events with negative weights at NLO
- Faster production for samples with very low filter efficiencies
- Code transition to adapt and optimize for multi-threading, vectorization, GPUs, esp.
 To reduce memory consumption for merged setups with high number of jets
 - Survey of the codes to understand the best way to move to GPUs and using vectorized code.
- Currently testing multi-threaded event generation with MG5_aMC and Powheg or in general all MC using gridpacks using ExternalLHEProducer
 - Will start extensive tests with different MC configurations in our actual production system soon.
- Can running multiple instances in parallel work for all?
 - Pythia8 OK (w/o external decay package), MG5_aMC being tested, fixed order calculations (e.g. QCD NNLO+NNLL+EWK ttbar and with cuts)?, ...

N.B.

- → Multi-threading may be needed for Run III.
- → Without GPUs we may still keep up with increased production needs beyond Run III (assuming Moore's law at ~+20%/year).

- Faster phase-space integration
 - Neural networks
 - ~100x (w.r.t. VEGAS) better precision for a toy problem with multi-dimensional non-factorizable integrals [*J. Bendavid arXiv:1707.00028*]
 - Unweighting efficiency for e+ e- →q qbar g: ~70% (MG5_aMC ~4%) [M. D. Klimek, M. Perelstein arXiv:1810.11509]
 - GPUs [K. Hagiwara et al. arXiv:0908.4403, arXiv:0909.5257]
 - cross section calculations ~100 times faster than CPUs
 - parallelizing VEGAS on GPUs. → ~50-60 times faster integration.
 - Is running parallel showers possible?

DNN on GPUs, we might expect ~10-5000 times faster integration depending on the process, perturbative order, and the complexity of the calculation.

→ Gridpacks may become obsolete?

Others

- Use common generator level events between experiments? \rightarrow x~2 for free event production.
- Find a common approach for MC collaborations for the details of the implementations?
- Can physicists be supported for MC (support) positions?

Additional Slides

Standard Setups for CMS Monte Carlo at Run II

Standard Setups for CMS Monte Carlo at Run II – parton shower

- → Percentage of events from different generators
- → Approximate and based on 2016 MC campaign

- Faster phase space integration
 - Current: MC integration w/ importance sampling; VEGAS, FOAM
 - Boosted Decision Trees or Deep Neural networks
 - BDT significant improvement over VEGAS but slightly worste than DNN

J. Bendavid arXiv:1707.00028

- DNN: with much less function evaluations, up to ~4x (w.r.t. FOAM) and ~100x (w.r.t. VEGAS) better precision for a toy problem with multi-dimensional non-factorizable integrals.
 - Additional improvements may come due to the flexibility of loss functions, network architecture, and minimization.
- NN applied to integrable processes

M. D. Klimek, M. Perelstein arXiv:1810.11509

- Higher unweight efficiency
- DNN do not require a choice of coordinates → may work even better at higher orders and in more complex calculations.
- Next steps: interface the algorithm to MG5_aMC, parton showering.

Unweighting efficiency	Scalar→1+2+3	3body decay w/ two resonances	e+ e- →q qbar g
NN	75%	54%	65-75%
MG5	6%	6%	4%

Faster phase space integration

K. Hagiwara et al. arXiv:0908.4403, arXiv:0909.5257

- GPUs is shown to do cross section calculations ~100 times faster than CPUs
- Phase space integration on GPUs: parallelizing VEGAS on GPUs. → ~50-60 times faster integration.

the corresponding GPU program

tī+jets

K. Hagiwara et al.

1305.0708

UŪ → tī+ gluons

ug → tī u + gluons

ug → tī u + gluons

Number of Jets in Final State

Fig. 6 Ratio of BASES process time (CPU/GPU) for $t\bar{t}+n$ -jet production with $t \to b \ell^+ v_\ell$ and $\bar{t} \to \bar{b} \ell^- \overline{v_\ell} (\ell = e, \mu)$ for $m_t = 175\,\text{GeV}$ and Br $(t \to b \ell^+ v_\ell) = 0.216$ in pp collisions at $\sqrt{s} = 14\,\text{TeV}$. Event selection cuts are given by Eqs. (8a)-(8c), (10a)-(10b) and (11a)-(11b) and the parton distributions of CTEQ6L1 [14] at the factorization scale of $Q = p_{\text{T,jet}}^{\text{cut}} = 20\,\text{GeV}$ is used, except for n = 0 for which the factorization scale is chosen as $Q = m_t$. The strong coupling constants are set as $\alpha_s^{2+n} = \alpha_s(m_t)_{\text{LO}}^2 \alpha_s(p_{\text{T,jet}}^{\text{cut}})_{\text{LO}}^n$ with $\alpha_s(m_t)_{\text{LO}} = 0.108$ and $\alpha_s(20\,\text{GeV})_{\text{LO}} = 0.171$.

DNN on GPUs, we might expect ~10-5000 times faster integration depending on the process, perturbative order, and the complexity of the calculation.