
Practical	Computing	Considerations

David	Lange
November	26,	2018

1



Introduction	and	Caveats	

• I	was	asked	to	describe	how	generators	fit	into	the	experimental	
production	system	and	some	issues	that	are	commonly	encountered	
• A	relatively	mundane	topic	– Apologies..
• I’m	from	CMS,	so	perspectives	and	specifics	are	sometimes	CMS	specific.	

• I’m	not	a	generator	expert	[ok,	in	another	era	I	was	one	(for	BABAR..)].	
My	perspective	for	this	talk	is	mostly	from	the	side	of	experiment	
software	and	production	computing	environments

2



Monte	Carlo	simulation	– ideal	world

Given	the	scale	of	LHC	simulation	needs,	reality	is	more	complicated

3

I	need	100k
events	with	my

favorite	generator



“Typical”	way	we	create	Monte	Carlo	simulation	on	the	grid

• Requests	come	in	bursts	– naturally	driven	by	data	
and	software	availability	as	well	as	conference	
deadlines
• MC	production	(GEN,	detector	simulation,	pileup	
simulation,	digitization	and	reconstruction)	is	the	
major	consumer	of	CPU	on	the	Grid.	”Queues”	are	
typically	deep,	so	individual	requests	take	weeks
• Gridpacks are	a	major	enterprise	for	largely	
non-experts.	
• Sizeable	set	of	experts	and	a	pre-production	
validation	check	are	needed	to	filter	out	most	
mistakes	in	this	process

4



One	approach	use	to	create	Monte	Carlo	simulation	on	the	grid

5

GEN Detector
simulation Digitization ReconstructionPileUp

simulation Trigger

Red	boxes	represent	separate	processing	jobs	that	each	write	output	and	may	be	
processed	by	different	compute	resources	at	different	times



One	approach	use	to	create	Monte	Carlo	simulation	on	the	grid

• Difficult	to	accommodate	generator	
developments	need	more	agility	than	
simulation	(which	prefers	stability)
• Long	startup	times	in	generators	(eg,	gridpack
handling,	once-per-job	calculations)		have	
bigger	impact	on	throughput

6

GEN Detector
simulation Digitization ReconstructionPileUp

simulation Trigger

Red	boxes	represent	separate	processing	jobs	that	each	write	output	and	may	be	
processed	by	different	compute	resources	at	different	times

• Generator	small	piece	of	total	
GEN+SIM	processing	time	
(historically)
• Less	data	handling	and	fewer	
processing	steps	

Positive	attributes Negative	attributes



A	second	approach	use	to	create	Monte	Carlo	simulation	on	the	grid

• Generators	must	run	many	events	per	job	
to	match	grid	requirements
• More	data	handling
• Potentially	more	latency	in	processing	MC	
events

7

GEN Detector
simulation Digitization ReconstructionPileUp

simulation Trigger

Red	boxes	represent	separate	processing	jobs	that	each	write	output	and	may	be	
processed	by	different	compute	resources	at	different	times

• Easy	to	include	newest	generator	
developments	(assuming	stable	file	
format	for	output)
• Job	requirements	(cores,	resources,	
etc)	can	be	optimized	for	generator	
being	used

Positive	attributes Negative	attributes



The	scale	of	grid	(and	its	friends)	usage	is	far	beyond	the	LHC	
vision	at	the	start	of	data	taking

• 10s	of	billions	of	Monte	Carlo	events	
per	year	
• Saved	to	disk,	so	generators	
produce	even	more

• Workflow	management	systems	
orchestrate	500k+	cores	distributed	
across	~100	sites.
• Most	sites	have	a	very	similar	compute	
environment,	but	there	
are	specialized	environments

• Jobs	slots	have	1-8	cores	and	
1-2	days	maximum	wall	clock	time
• Experiments	provide	evolving,	but	
controlled	and	thus	reproducible,
software	environment	
• Experiment	frameworks	work	closely	
with	workflow	management	systems	to	
most	efficiency	use	allocated	resources

8



Aggressive	code	optimization	is	an	important	factor	enabling	
this	scale	of	operations

• Illustrative	example:	CMS	
reconstruction	has	achieved	
consistent	speed-ups	while	
maintaining	or	extending	
physics	performance
• Achieved	via
• Pure	technical	improvements	
(eg,	code	refactoring)
• Algorithmic	improvements

Typically	achieved	by	small	
groups	of	people

9



What	does	this	mean	to	a	software	developer?	Ideally…

• Code	should	be	robust	enough	to	run	billions	of	events	without	errors	
(Physics-wise	or	technical)

10



What	does	this	mean	to	a	software	developer?	Ideally…

• Code	should	be	robust	enough	to	run	billions	of	events	without	errors	
(Physics-wise	or	technical)

• Code	startup	time	should	be	minutes	not	hours

11



What	does	this	mean	to	a	software	developer?	Ideally…

• Code	should	be	robust	enough	to	run	billions	of	events	without	errors	
(Physics-wise	or	technical)

• Code	startup	time	should	be	minutes	not	hours

• Code	should	be	robust	enough	to	run	for	hours	without	problems

12



What	does	this	mean	to	a	software	developer?	Ideally…

• Code	should	be	robust	enough	to	run	billions	of	events	without	errors	
(Physics-wise	or	technical)

• Code	startup	time	should	be	minutes	not	hours

• Code	should	be	robust	enough	to	run	for	hours	without	problems

• Code	should	be	runnable	as	a	library	not	just	in	its	own	framework

13



Technology	challenges	mean	that	threaded	frameworks	are	
either	already	in	use	or	soon	will	be

Trend	towards	more	cores	and	slower	memory	access.	This	is	directly	at	odds	
with	”traditional”	HEP	applications:	Memory-heavy	and	single	threaded

14

End	of	processor	speedup Towards	many-core	computing



Common	wisdom:	Generator	piece	of	the	workflow	is	small	
compared	to	the	rest

• Often	incorrect	(and	increasingly	so).	Efficient	operations	of	generator	
workflows	is	more	and	more	important	to	experiments
• Examples:
• Copying/untarring of	gridpacks can	be	a	long	process	(and	makes	
grid	node	disks	unhappy)
• I	understand	that	a	solution	to	this	is	in	the	works	or	maybe	already	complete…

• Complexity	of	calculations	as	”N”s	are	added
• Unavoidable?	[potentially	mitigated	via	code	optimizations?]

• Filters	with	a	particularly	low	efficiency	for	selecting	events:	
• Events	are	are	thrown	away	as	“uninteresting”	according	to	generator	level	results.	This	
avoids	the	usually	much	more	expensive	simulation	+	reconstruction	processing

• Is	there	an	opportunity	to	work	together	to	improve	?	
(eg,	advise	on	better	configurations,	implementing	biasing	possibilities,	etc)

15



Coding	thoughts	that	have	enabled	experiment	applications	to	
run	at	scale	with	good	throughput	per	cost	

• Avoid	where	ever	possible
• Repeated	calculations
• Frequent	(small)	memory	allocations
• Global	non-const variables	and	statics	(threaded	applications)
• Unneeded	inheritance	(virtual	function	calls	are	expensive)
• Divisions	(when	a	multiplication	will	do)

16



Coding	thoughts	that	have	enabled	experiment	applications	to	
run	at	scale	with	good	throughput	per	cost	

• Avoid	where	ever	possible
• Repeated	calculations
• Frequent	(small)	memory	allocations
• Global	non-const variables	and	statics	(threaded	applications)
• Unneeded	inheritance	(virtual	function	calls	are	expensive)
• Divisions	(when	a	multiplication	will	do)

• Be	careful	with
• Small	function	calls	that	are	not	inlined by	the	compiler	

17



Coding	thoughts	that	have	enabled	experiment	applications	to	
run	at	scale	with	good	throughput	per	cost	

• Avoid	where	ever	possible
• Repeated	calculations
• Frequent	(small)	memory	allocations
• Global	non-const variables	and	statics	(threaded	applications)
• Unneeded	inheritance	(virtual	function	calls	are	expensive)
• Divisions	(when	a	multiplication	will	do)

• Be	careful	with
• Small	function	calls	that	are	not	inlined by	the	compiler	

• Strive	to
• Keep	algorithms	thread	safe

18



Recent	example	exercise..

• By	chance	discovered	that	a	NLO	workflow	used	for	CMS	nightly	
regression	checks	took	~2	hours	to	run	(10	events)
• 99%+	was	initialization	of	NLO	generator.	Doing	this	in	production	(likely	we	do	
already…)	has	big	impact	on	throughput	for	those	workflows.
• We	looked	into	possible	ways	to	improve			

• Bottom	line:	3.5x	speedup	achieved	via	two	different	approaches
• Hacky	method	(~100	lines	of	code	change):	Optimizing	handful	of	functions	that	
were	identified	to	use	most	of	the	CPU	time
• Expert method(~70	lines):	Ensure	that	initialization	happens	~1	time

19



We	expected	to	find	that	mathematical	functions	dominated

• Again,	just	an	illustrative	example	[CMS	code	had	(still	has)	plenty	of	much	
worse	behaviors	– the	only	way	to	find	them	is	to	investigate	and	improve…]

20



Example	fix	(4x	faster	with	the	CMS	compilers)

21



After	(the	expert	fix)

• Looks	much	more	like	what	we	expected

22



About	software	licenses	

• The	field	has	converged	on	open-source	software
• We	are	“just”	left	with	discussions	about	which	license	is	most	appropriate	and	the	
impact	that	has	on	“users”

• Experiments	build	large	stacks	of	software	from	many	components	and	
getting	harmony	in	licensing	is	difficult
• Respecting	GPL	licensed	code	means	that	large	parts	of	the	experiment	software	
code	becomes	GPL	by	inheritance.	Following	this	policy	interpretation	also	introduces	
conflicting	license	requirements	(given	~100	dependencies)
• Defining	“Derivitive works”	seems	to	be	an	open	point	with	big	implications.	
We	aren’t	lawyers	(and	don’t	want	to	be…)

• Ways	to	resolve	this	dilemma	involve	a	lot	of	unnecessary	gymnastics	of	different	
builds	and	complicated	applications	of	licenses

23



About	software	licenses	

• Software	communities	in	general	are	being	more	aware	of	
this	issue.	We	aren’t	alone
• Experiments	are	trying	to	solidify	their	situations
• CERN’s	viewpoint	has	evolved	in	recent	years	with	the	desire	to	work	more	
closely	with	industry.	They	have	chosen	Apache2

• We	have	to	improve	our	acknowledgements	and	citations	for	software
• MCNet	guidelines make	this	point	well	and	the	HSF	very	much	on	board	with	this

• We	don’t	want	to	dwell	on	this	point	in	this	workshop,	but	we	would	like	
to	raise	awareness	of	it	and	return	to	it	in	a	later	meeting	

24



Conclusions

• Experiments	deal	with	large	software	stacks.	Much	of	this	code	is	
experiment	specific,	but	the	use	of	external	packages	are	essential
• Generators,	Geant4,	ROOT,	math	libraries,	etc

• Consistent	(but	not	expansive)	effort	looks	for	opportunities	for	technical	
improvements	has	enabled	the	current	scale	of	operations.
• Looking	towards	HL-LHC,	we	must	not	only	continue	this	trend,	but	also	to	evolve	
with	changing	computing	resources	

• I	didn’t	talk	about	accelerators.		Are	they	an	area	for	common	R&D?
• We	all	need	to	learn	if/how/when	accelerators	can	provide	more	events	per	ChF
for	our	workflows	(a	calculation	complicated	by	HPCs)
• Lots	of	R&D	across	the	community,	with	success	stories	to	build	on

25



Backups

26



Software	distribution

• Releases	consist	of	experimental	software	+	numerous	”external”	
dependencies.	
• Run	2	LHC	software	releases	are	large,	and	include	many	components

• Distribution:	Releases	need	to	be	easily	made	available	to	sites.	Currently	
>90%	use	CVMFS	for	this
• Consistency:	The	evolution	of	major	release	versions	should	not	change	
results	once	in	production.	They	instead	should	evolve	to	include	
additional	features	
• Reproducibility:	Production	depends	on	released	software	versions	
(sources,	libraries,	conditions,	etc)	not	changing	
• Self	contained:	Production	systems	rely	on	the	software	release	to	
declare	all	of	its	dependencies

27


