Optimizing Memory Usage on modern computers

Sébastien Ponce
sebastien.ponce@cern.ch

CERN

November 26t 2018

S. Ponce Optimizing Memory Usage on modern computers 1/30

Foreword

@ the concepts and techniques presented here are generic
o they apply to basically all languages and data structures

@ however, examples shown are based on C** and the STL

S. Ponce Optimizing Memory Usage on modern computers 2 /30

@ Context
@ What is the problem with memory ?

© How to be efficient
@ Basics of memory allocation
@ Efficient memory allocation
@ Cache optimization, SoA

© Measuring efficiency
@ Detection of suboptimal allocations

S. Ponce Optimizing Memory Usage on modern computers 3/30

Context What is the problem with memory ?

What is the problem with
memory ?

S. Ponce Optimizing Memory Usage on modern computers 4 /30

Context What is the problem with memory ?

Evolution of memory in the past decades

CPU
1000 rrerremssrrerms s gy 60%/year.
“Moore’s Law” Due to Moore's law
g Processor-Memory n the 805 and 905,
E Performance Gap: .
£ (grows 50% f year) thel’e IS a gap
—DRAM between CPU and
e O memory
1 rr T S S S R S S S S
performances
S - o WYL ®o o o oooF Mo Fn e
EER TR R R RN RN R
Year
Consequences :

@ access to memory is now extremely slow (relatively)
@ level of caches have been introduced to mitigate

@ good usage of caches has become a key parameter

S. Ponce Optimizing Memory Usage on modern computers

5/30

What is the problem with memory ?

Context

Typical cache structure

Typical data, on an Haswell architecture

size

64 kB

256 kB

10 MB

64 GB

latency
4 cycles
10 cycles
40 cycles

400 cycles

Context What is the problem with memory ?

Typical cache structure

size latency

64 kB 4 cycles

L2 Cache

256 kB 10 cycles

10 MB 40 cycles

64GB

Typical data, on an Haswell architecture

S. Ponce Optimizing Memory Usage on modern computers

Recipies Basics Allocation SoA

Basics of memory allocation

S. Ponce Optimizing Memory Usage on modern computers 7 /30

Recipies Basics Allocation SoA

Process memory organization

4 main areas
the code segment for the code of the executable
the data segment for global variables
the heap for dynamically allocated variables
the stack for parameters of functions and local variables

Memory layout

heap
1 1

1 1
stack
data segment
code segment

S. Ponce Optimizing Memory Usage on modern computers

8 /30

Recipies Basics Allocation SoA

Process memory organization

Stack allocation usage and cost
@ small objects
o lifetime limited to current scope

@ allocation is almost free : one CPU cyle

Heap allocation usage and cost

@ any size

o lifetime infinite, until explicit deallocation
@ allocation is costly :

o find an empty piece of memory
e going though a list/map hold by the linux kernel
e and taking a lock to make it thread safe

S. Ponce Optimizing Memory Usage on modern computers 9 /30

Recipies Basics Allocation SoA

Basic container in memory

Simple vector / array case

[[=[=[=[=[=[=[=[=[]

S. Ponce Optimizing Memory Usage on modern computers 10 / 30

Basic container in memory

Simple vector / array case

[[=[=[=[=[=[=[=[=[]

Array / Vector of objects

struct A { float x, y, z; };

’Xo‘yo‘Zo X1 |\ N |21

m‘yz‘zQ‘xz‘...‘

Ao A1 Ao

Optimizing Memory Usage on modern computers

Recipies Basics Allocation SoA

Container of pointers

struct A { float x, y, z; };
std: :vector<A*> v; std: :array<A*> a;

’ptro‘ptrl‘ptrg ptr3‘ptm‘ptrs‘ptnj‘ptn‘ptrg‘ptrg‘ ‘

S. Ponce Optimizing Memory Usage on modern computers 11 / 30

Basics Allocation SoA

Recipies

Container of pointers

Naive view
struct A { float x, y, z; };

std: :vector<A*> v; std: :array<A*> a;

’ptro‘ptrl‘ptrg ptr3‘ptm‘ptrs‘ptrﬁ‘ptn‘ptrg‘ptrg‘ ‘

Realistic view

ptro‘ptrl‘ptrz‘ptr3‘ptr4‘ptm‘ptrg‘ptﬁ‘ptrg‘ptrg‘ ‘

&
S
&

X5 | Y5 | Zs5

S. Ponce

Optimizing Memory Usage on modern computers

11/ 30

Recipies Basics Allocation SoA

Consequences : memory allocations

Optimal number of allocations

@ Container of A — optimally 1 allocation, possibly on stack

o Container of A* — minimum n+1 allocations, n on heap

S. Ponce Optimizing Memory Usage on modern computers

12 /30

Recipies Basics Allocation SoA

More consequences : reading data

Memory view for container of objects

Each line corresponds to a cache line (64 bytes, 16 floats)

0x00C0
0x0080 [Xo|Yo|zo|x1|y1|z1|x2|Y2|22|x3|y3 |23 |Xa |Ya|2Za|Xs5
0x0040 |Ys|2s|X6|Y6|2Z6|x7|Y7|27|X8|Y8|2Z8|X0|Y0|Z0| -

0x0000

Recipies Basics Allocation SoA

More consequences : reading data

Each line corresponds to a cache line (64 bytes, 16 floats)

0x00C0
0x0080 [Xo|Yo|zo|x1|y1|z1|x2|y2|22|x3|y3|23|Xa |Ya|2a|Xs5
0x0040 || Ys|2s|X6|Y6|26|x7|Y7|27|X8|Y8|2Z8|X0|Y0|Z0| -

0x0000

One read from RAM to Level 1 Cache is enough (2 lines in one go)

Memory view for container of objects

S. Ponce Optimizing Memory Usage on modern computers

13/ 30

Recipies Basics Allocation SoA

More consequences : reading data

Memory view for Container of pointers to objects

Each line corresponds to a cache line (64 bytes, 16 floats)
0x0240
0x0200 |xs|Ys|Zs xo| Yol 2o
0x01C0 x7|y7| 27
0x0180 X5 | Y5 |Z5 X6 | Vo | 26
0x0140
0x0100 | |xa|ys|z TAIE?
0x00CO0 X2 | Y2 |22
0x0080 Xo|Yo|zo|x1|Y1|z1
0x0040 |Po|p1|p2|P3|Pa|Ps|Pe|P7|Ps|Po
0x0000

S. Ponce Optimizing Memory Usage on modern computers 14 / 30

Recipies Basics Allocation SoA

More consequences : reading data

Memory view for Container of pointers to objects

Each line corresponds to a cache line (64 bytes, 16 floats)
0x0240
0x0200 |xs|Ys|zs X9|Y9|2o
0x01CO X7 |Y7|z7
0x0180 X5 |Y5|Z5 X6 | Y6 |26
0x0140
0x0100 X3|Y3|z3 X4 |Ya|2za
0x00C0 x2|Y2| 22
0x0080 Xo|Yo|Zo|X1|Y1|Z1
0x0040 |[Po|P1|p2|P3|Pa|Ps|Pe|P7|Ps|Po
0x0000
You need to read many lines, in several accesses
Remember each RAM access is 400 cycles...

S. Ponce Optimizing Memory Usage on modern computers 14 / 30

Recipies Basics Allocation SoA

Practical consequences

@ we want as few heap memory allocations as possible
e stack usage is much better !

@ we want continuous memory blocks, allocated in one go
e that means containers of objects, no pointers involved

S. Ponce Optimizing Memory Usage on modern computers 15 / 30

Recipies Basics Allocation SoA

Efficient memory allocation

S. Ponce Optimizing Memory Usage on modern computers 16 / 30

Recipies Allocation SoA

How does a dynamic container grow ?

struct A { float x, y, z; };
std: :vector<A> v;

S. Ponce Optimizing Memory Usage on modern computers 17 / 30

Recipies Allocation SoA

How does a dynamic container grow ?

struct A { float x, y, z; };
std: :vector<A> v;

Initially, container is empty, no storage allocated

start 0x0
finish 0x0
end_of_storage 0x0

S. Ponce Optimizing Memory Usage on modern computers 17 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

struct A { float x, y, z; };
std: :vector<A> v;

Initially, container is empty, no storage allocated

start 0x0
finish 0x0
end_of_storage 0x0

Adding first element

for std::vector, allocates storage for the first element only !

0x1234
0x1240
0x1240

S. Ponce Optimizing Memory Usage on modern computers 17 /30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding second element

0x1234
0x1240
0x1240

S. Ponce Optimizing Memory Usage on modern computers 18 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding second element

0x1234 —

gﬁgjg] ool [T T[]

© allocate new piece of memory for 2 items

S. Ponce Optimizing Memory Usage on modern computers 18 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding second element

0x1234 —

RN
gﬁgjg] Dolef=] bofo[a] []]

© allocate new piece of memory for 2 items

@ copy existing content

S. Ponce Optimizing Memory Usage on modern computers 18 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding second element

0x1234 ——
0x1240 j IXOIYO[ZOI IXOIYO[Zolxll}’l[Zl‘
0x1240

© allocate new piece of memory for 2 items

@ copy existing content

© write new content

S. Ponce Optimizing Memory Usage on modern computers 18 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding second element

0x5678 |
0x5684 IXOIYO[ZOI IXOIYO[Zo[X1[y1121‘
0x5684 —I T

© allocate new piece of memory for 2 items
@ copy existing content
© write new content

© update pointers

S. Ponce Optimizing Memory Usage on modern computers 18 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding second element

0x5678
Ox5664
0x5684 —I

allocate new piece of memory for 2 items

copy existing content
write new content

update pointers

00000

Deallocate original piece of memory

S. Ponce Optimizing Memory Usage on modern computers 18 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding third element

0x5678 ——
0x5684 —I lXO‘.VO‘ZO‘XI‘}/l‘le
0x5684 T

S. Ponce Optimizing Memory Usage on modern computers 19 /30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding third element

0x5678 |——
05634 pofolzobalyiz) [[[[[T T[]]T]

@ allocate new piece of memory for 4 items
e double size at each iteration

S. Ponce Optimizing Memory Usage on modern computers

19 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding third element

0x5678 |——
R peyolzoban]a) - bawlzbalyfa] | [[]]]

@ allocate new piece of memory for 4 items
e double size at each iteration

@ copy existing content

S. Ponce Optimizing Memory Usage on modern computers 19 /30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding third element

0x5678 ——
oooos | [SRERTATE] EREERERRE]

@ allocate new piece of memory for 4 items
e double size at each iteration

@ copy existing content

© write new content

S. Ponce Optimizing Memory Usage on modern computers 19 /30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding third element

0x9ABC .
S22 S T

@ allocate new piece of memory for 4 items
e double size at each iteration

@ copy existing content
© write new content

@ update pointers

S. Ponce Optimizing Memory Usage on modern computers 19 / 30

Recipies Basics Allocation SoA

How does a dynamic container grow ?

Adding third element

0x9ABC 3
0x9AC8 [xo[yolzoaln]zely]z] []
ooAcC | |

[

@ allocate new piece of memory for 4 items
e double size at each iteration

@ copy existing content
© write new content

@ update pointers

© Deallocate original piece of memory

S. Ponce Optimizing Memory Usage on modern computers 19 / 30

Recipies Basics Allocation SoA

Proper container allocation

You may want to avoid default behavior
@ content of container is reallocated and copied when they grow
o first item of a 1000 nodes vector is copied 10 times in CT |

@ when reaching 1000 items, you will have copied 1023 items in
total and allocated 11 pieces of memory, releasing 10

You want to control the allocation

@ and “reserve” the space manually at the start

std: :vector<int> v;
v.reserve(1000);

@ ensures single allocation, no copies, no reallocations

0x1234
oazs H [T T T T T 11111}

Ox1dec i)

S. Ponce Optimizing Memory Usage on modern computers 20 / 30

Recipies Basics Allocation SoA

@ use stack as much as possible, avoid heap when feasible

@ use container of objects, not of pointers

@ use container reservation

S. Ponce Optimizing Memory Usage on modern computers 21 /30

Recipies Allocation SoA

Cache optimization, SoA

S. Ponce Optimizi

Memory Usage on modern computers

Recipies Basics Allocation SoA

Back to cache considerations

Memory view for container of objects

struct A { float a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p; }
std: :vector<A> v;

Each A corresponds to a cache line (64 bytes, 16 floats)

oxotco [-1-T-T-T-1-T-T-T-T-T-T-T-T-T-T-
0x0180 |as|bs|Cs|ds|€s|fs|85|hs| i5 | js | ks | I [Ms| 5|05 | Ps
0x0140 [a4|bs|Ca|ds|€s|fs |84 |ha|is |Ja |Ka|la |Ma|Na|0a|Pa
0x0100 |a3|bs|c3|ds|€3|f5|83|h3| iz |3 |ks| k5 [M3[N3|03|P3
0x00C0 |32|bz|C2|da|€2| fr |82]ha| ia | j2 | k2| ko [M2| N2| 02 P2
0x0080 |ai|by|C1|dyi|€1|f|8L|h1| i |j1|ki|h [P1|n1|01|pP1
0x0040 |ao|bg|Co|do|€o|fy|80|ho| io jo ko | Io |Mo| Mo |00 |Po
0x0000 . . . R

Recipies Basics Allocation SoA

Back to cache considerations

Memory view for container of objects

struct A { float a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p; }
std: :vector<A> v;

Each A corresponds to a cache line (64 bytes, 16 floats)

0x0180 |as|bs|Cs|ds|€s|fs| &5 |hs| is | js | ks | Is |5 Ns| Os | Ps
0x0140 [a4|bs|Ca|ds|€4| 14|84 s ia | Ja |Ka| la |Ma|Na|Oa|Pa
0x0100 |a3|bs|c3|ds|€3| (&3 |hs| iz | j3 | k3| I5 |3\ n3| 03| p3
0x00CO |a2|ba|c2|da|€2| (|82 ha| iz | j2 | k2| b |M12| 12|02 | P2
0x0080 |a1|bi|ci|dh|er|fi|&L|hi|i |j1|ka|h |mn1|o1|P1
0x0040 |ao|bo|Co|do|€0|fo|&0ho| io |Jo |ko| lo [Mo|no|oo|Po

Computing > g, requires usage of all cache lines

S. Ponce Optimizing Memory Usage on modern computers 23 /30

Recipies Basics Allocation SoA

Structure o Arrays (SoA) approach

Let's put together what goes together

struct As {
std::vector<float> a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p;

} v

Memory now looks like this :

0x01CO
0x0180 |€o|€1|€ex|€e3|ea|es|€s|€Er|€Es|€Egler0/€11(€12| - | - | -
0x0140 |h|f|hL|B|fa|f|f|f|f|f |fiolfi1lfiz] - |- |-
0x0100 |&0|81|82|83|84|85|86 (87|88 |89 8108111812 - | - | -
0x00CO |ho|h1|h2|h3|ha|hs|he|h7|hs|holhioh1ilhio] - | - | -
0x0080 |io|i1|i2|i3|ia|is|i6|i7|is |0 |it0|i1|ir2] = |- | -
0x0040 |Jjo |j1|J2|J3|Jja|Js |J6 |47 |Js |Jo Lroljitljre| - | - | -
0x0000 |- |- [-[-|-|-1-1-1-1-[-[-[-1-1-]-

Recipies Basics Allocation SoA

Structure o Arrays (SoA) approach

Let's put together what goes together

struct As {
std::vector<float> a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p;

} v

Memory now looks like this :

0x01CO
0x0180 |€o|€1|€ex|€e3|ea|es|€s|€Er|€Es|€Egler0/€11(€12| - | - | -
0x0140 |hlh|H|B|fa|f|f|f7|f[f |folfiilfia] - |- |-
0x0100 [8o0]81|82|83(84|85|86|87| 88|80 jgr0jgu1lg12] - | - | -
0x00CO |ho|h1|h2|h3|ha|hs|he|h7|hs|holhioh1ilhio] - | - | -
0x0080 |io|i1|i2|i3|ia|is|i6|i7|is |0 |it0|i1|ir2] = |- | -
0x0040 |Jjo |j1|J2|J3|Jja|Js |J6 |47 |Js |Jo Lroljitljre| - | - | -
0x0000 |- |- [-[-|-|-1-1-1-1-[-[-[-1-1-]-

Computing > g, uses a single cache line

S. Ponce Optimizing Memory Usage on modern computers 24 /30

Recipies Basics Allocation SoA

Consequences

@ only one line loaded in L1 cache
@ only one line dropped from that cache to fit the new one
@ better chances to find data in cache for next instruction

@ potential gain : factor 2 to 100 on memory access

v

Main lesson

@ Colocate in memory what is used at the same time

@ Drawback : optimization of the memory structure depends on
the consumer

S. Ponce Optimizing Memory Usage on modern computers

25 / 30

Detection of suboptimal
allocations

Optimizing Memory Usage on modern computers 26 / 30

Detection Detection

The main tools : profilers

Find out where allocation really costs time

vtune from Intel

@ uses internal processor counters to see where time is spent
@ in particular number of cycles spent in memory allocations

@ and cache misses

callgrind - open source

@ simulates a processor and allows to count what is going on
@ in particular number of cycles spent in memory allocations

@ and (simulated) cache misses

S. Ponce Optimizing Memory Usage on modern computers 27 / 30

Detection Detection

callgrind in practice

1360491

1599 550 x

1204 026 x

1617 034 x

1486 096 x 1465 934 x

1495 600 x \

1617 034 x

operator long)
(.1 766 941 710

10 688 4...

| 110420 1...

< v

@ graph of function calls leading to memory allocation

@ and the time spent for each case

S. Ponce Optimizing Memory Usage on modern computers 28 / 30

Detection Detection

callgrind in practice

=

HIT1Fitter::loadMeasurement(:

=

surementProvider::measures

@ all comes from the HLT1Fitter, where you find :

unsigned int HLT1Fitter::fit(LHCb::Track& ...) const {
// Store results of the Kalman fit
std: :vector<LHCDb: :Measurement*> measurements;

S. Ponce Optimizing Memory Usage on modern computers 29 / 30

Detection Detection

Conclusions

e Memory allocation/deallocations are not cheap

@ Optimizing them can lead to substantial gains
@ key directions are :

e container of objects

e preallocate containers aka “reservation”

e optimize your data structures for caches, aka SoA
e use profilers to detect potential issues

S. Ponce Optimizing Memory Usage on modern computers 30 / 30

	Context
	What is the problem with memory ?

	How to be efficient
	Basics of memory allocation
	Efficient memory allocation
	Cache optimization, SoA

	Measuring efficiency
	Detection of suboptimal allocations

