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• generate p p > t t~ [QCD]
• output
• launch

• set store_rwgt_info T

• systematics run_01 (OFFLINE)

• Allow to reweight sample with FUTURE pdf keeping the 
NLO acccuracy
• Trade of speed with disk space
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Re-Weighting
• Change the weight of the events
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predict the weight from any value of the coupling as
soon as the weights for two di↵erent values of the cou-
pling are known. This property can be used to further
speed up the computation of the weight.

Fig. 1 Di↵erential cross-section for pp ! ZW
+ at 13 TeV

LHC. This correspond to the Standard model plus the op-
erator O3W for two di↵erent couplings value. Only the SM
contribution plus the interference term is kept on this plot.
See text for details.

4.2 ZH associated production in the E↵ective Field
Theory at NLO

For our first NLO validation, we consider the asso-
ciated production of a Z and H boson in the EFT
as implemented in the Higgs Characterisation frame-
work/model [32]. We use two of the benchmarks in-
troduced in [33]: HD and HDder. In more details, the
e↵ective Lagrangian relevant for this example is

LHD = �
1

4

1

⇤
HWWZµ⌫Z

µ⌫
H (20)

LHDder = �
1

⇤
H@ZZ⌫@µZ

µ⌫
H +

(�
1

⇤
H@WW

+
⌫
@µW

�µ⌫
H + h.c.) , (21)

where ⇤ is the high energy scale (set to 1TeV), HWW ,
H@Z , H@W are dimensionless couplings (set to one).
H is the Higgs doublet field and Vµ⌫ = @µV⌫ � @⌫Vµ;
V = Z,W

�
,W

+.
In Figure 2 we present the di↵erential cross-section

for the transverse momentum of the Higgs and for its ra-
pidity. In both cases, we present the curve for the SM,
HD and HDder benchmarks. For the transverse mo-
mentum, we start from an HDder sample of events and
perform the re-weighting to the other scenarios. While

Fig. 2 Di↵erential cross-section for pp ! ZH at 13 TeV LHC
featuring both LO and NLO re-weighting methods. Events
have been showered with Herwig6 [31]. See text for details.

for the rapidity we present the plot where the origi-
nal sample is the HD theory. Each re-weighted curve
is then compared with a dedicated generation and the
associated ratio plot is displayed below with the sta-
tistical uncertainty expected for the generation of two
independent samples. The agreement between the two
is excellent for both the NLO accurate re-weighting and
the Naive LO-like re-weighting. In this case the NLO
QCD e↵ects factorise from the BSM ones and there-
fore the NLO accuracy of the Naive LO-like approach
can only be spoiled by MC counter terms –which are as
expected quite mild–. One can also compare the statis-
tical fluctuations between the MG5 aMC curves and the
one obtained by re-weighting. If you look at the top
plot (transverse momenta) for the HD case, it is clear
that the statistical fluctuations are more pronounced
for the curve obtained by re-weighting. This is an ex-
ample of enhancement of statistical uncertainty due to
the re-weighting as discussed around Eq. 3 since in the

EFT Case
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then apply the following re-weighting:

W
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Both the virtual and the approximate virtual are re-
weighted by the same pre-factor which should allow
to limit the enhancement of the second integral. The
demonstration that such re-weighting is NLO accurate
is presented in appendix A. It can be intuitively un-
derstood considering (B+ V) as a single block which is
re-weighted accordingly.

3.3 Loop improved re-weighting

A third type of re-weighting was originally introduced
in the context of multiple Higgs production [18,28,29],
which we now briefly describe. In this case the idea is
to perform the NLO computation in the infinite top-
mass limit and then re-introduce the finite top-mass
e↵ects via re-weighting. Eq. 16 is directly applicable if
the exact finite virtual part is known. If not, one can
still use an approximate method:
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�,R
. (17)

Both this method and the Naive LO-like method are
not NLO accurate. However one can expect that the
loop improved method has a better accuracy than the
other one due to the correct treatment of the various
counter terms.

4 Implementation and validation

The various methods of re-weighting discussed in the
previous section have been implemented in MG5 aMC and
are publicly available starting from version 2.4.0. At the
LO, the default re-weighting mode is based on the he-
licity information present in the event (Eq. 4), while
for NLO samples, the default re-weighting mode is the
NLO accurate one (Eq. 16). Fixed-order NLO genera-
tion can not be re-weighted since no event generation is
performed in this mode. A manual of the code is avail-
able online at the following address:
cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Reweight.

In this section, we will present four validation ex-
amples covering the various types of re-weighting intro-
duced in the previous section. Since the purpose of this
section is mainly to validate our method, the details of
the simulation used (cuts, type of scale, ...) are kept to
a minimum. Otherwise stated, the settings used corre-
spond to the default value of MG5 aMC (version 2.4.0).

4.1 ZW associated production in the E↵ective Field
Theory at the LO

For the first validation, we will use the E↵ective Field
Theory (EFT) in the Electro-Weak sector [30]. We will
focus on the associated production of the W and Z

boson for the following dimension six operator:

O3W = Tr [Wµ⌫W
⌫⇢
W⇢

µ] , (18)

with

Wµ⌫ =
i

2
gW ⌧

I(@µW
I

⌫
� @⌫W

I

µ
+ gW ✏IJKW

J

µ
W

K

⌫
) (19)

and gW is the weak gauge coupling, ⌧ I are the pauli
matrices and W

I

µ
is the gauge Field of SU(2).

In Figure 1 we present the di↵erential distributions
for the transverse momenta of the Z boson at LO accu-
racy. Starting from a sample of Standard Model events
(black solid curve), we have re-weighted our sample to
get the SM plus the interference term with the dimen-
sion six operator for two values of the associated cou-
pling: c = 50TeV�2 (dashed blue) and c = 500TeV�2

(dashed green). This second value is clearly outside the
validity region for the EFT approach as the di↵erential
distributions turns to be negative at low transverse mo-
mentum. Nevertheless, having such large e↵ects is in-
teresting for the validation of the re-weighting method.
The same di↵erential distributions are generated with
MG5 aMC (solid green and blue) and validates the re-
weighting method.

The ratios between the di↵erential curves obtained
with each method are presented in the second inset.
This inset contains also the statistical uncertainty (yel-
low band) for the ratio of two independent SM sam-
ples. The compatibility of those two ratio plots with
the expected statistical fluctuation validates our ap-
proach/code implementation. The first inset presents
the ratio between the EFT and SM predictions. It shows
that the method works correctly for quite small and
quite large modifications of the di↵erential distribu-
tions.

One can note that in the context of EFTs, the weight
is linear in the dim-6 coupling7 therefore it is trivial to

7 There would also be quadratic contribution if we include
the squared matrix element associated to the dimension six
operator.
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•  You need to have the same phase-space (more 
exactly a subset)

•  Mass scan are possible only in special case

•  statistical uncertainty 
can be enhanced by the 
re-weighting

��new =
�new

�old
��new +

V arwgtp
N

�old

Limitation
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3.2 Histogram 2

* Plot: PT ( t )

Table 2. Statistics table

Dataset Integral
Entries
/ events

Mean RMS %Underflow%Overflow

rwgt 808010 1.0 174.224 112.2 0.0 0.02171
mg5 815965 1.0 175.624 114.8 0.0 0.0476

Figure 2.

– 5 –

3.6 Histogram 6

* Plot: M ( t t )

Table 6. Statistics table

Dataset Integral
Entries
/ events

Mean RMS %Underflow%Overflow

rwgt 808010 1.0 744.794 235.7 0.0 11.21
mg5 815965 1.0 746.522 238.5 0.0 11.32

Figure 6.

– 9 –

• Use Rambo mass re-shuffling method for generating 
kinematics at new mass point

• Use standard Re-weighting approach to get correct 
weight.

• Therefore you can also change spin (stop pair. 
production form tt~ sample)

[CERN-TH.4299]

plot done with MadAnalysis5

Original sample: mt=175 GeV
Plot for mt=250GeV

Re-shuffled 
Re-weighted

Control
MG5aMC



Fabio MaltoniFabio MaltoniMattelaer Olivier MadGraph on HPC

NLO Re-Weighting

 7

NLO method

• tracks the dependencies in the various matrix-
elements (born, virtual, real)

• re-weight each part according to the associated 
matrix-element

•need the same information as for systematics
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phase-space with a universal constant since the MC
counter terms connect the born and the real in a non
local way. Nevertheless, as we will see later, the e↵ect
of the MC counter terms are quite mild, as expected
since their contribution to the total cross-section are
exactly zero by construction. This allows the Naive LO-
like method to nicely approximate the NLO di↵eren-
tial cross-section for many processes/theories where the
last equation needs to be valid only phase-space point
by phase-space point (i.e. when the ratio of the real
matches the ratio of the Born and of the virtual in the
soft and/or collinear limit).

3.2 NLO re-weighting

In order to have an accurate NLO re-weighting method,
one should explicitly factorise out the dependence in
the (various) matrix elements (i.e. in the Born squared
matrix element –B– , the real squared matrix element
–R– and in the finite piece of the virtual –V–). We
use the decomposition of the di↵erential described in
[25]4 introduced in the context of the evaluation of the
systematics uncertainties:

d�
↵ = f1(x1, µF )f2(x2, µF )

h
W

↵

0 +W
↵

F
log (µF /Q)2 +

W
↵

R
log (µR/Q)2

i
d�

↵
, (9)

where the ↵ index is either R,S,C, SC,MC (see previ-
ous sub-section). Q is the Ellis-Sexton scale and d�

↵ is
the phase-space measure.

The expression of the W↵

0 , W
↵

F
, W↵

R
are given in the

appendix of [25] and are not repeated here. All those
expressions have linear dependencies in the Born, the
virtual, the real and the color connected Born BCC (this
term is defined in Eq. (3.24) of [26]). This allows us to
decompose the corresponding expressions as:5

W
↵

�
= B ⇤ C

↵

�,B
+ BCC ⇤ C

↵

�,BCC

+ V ⇤ C
↵

�,V
+R ⇤ C

↵

�,R
(10)

where the � index is either 0, R or F . The C
↵

�,• are ex-
pressions which do not depend of either the PDF/scale
or the matrix-element. From this expression we define
the following three terms:6

W
↵

�,B
⌘ B ⇤ C

↵

�,B
+ BCC ⇤ C

↵

�,BCC
, (11)

W
↵

�,V
⌘ V ⇤ C

↵

�,V
, (12)

W
↵

�,R
⌘ R ⇤ C

↵

�,R
. (13)

4 We also use the same (MC) counter terms as described in
that paper.
5 Due to the presence of multiple couter terms, the kine-

matic configuration on which the matrix-element is evaluated
is not unique: an implicit sum over such kinematical configu-
rations is assumed here and in the rest of the paper.
6 One can notice that W

↵
�,V = W

↵
�,R = 0 for � = R,F due

to the use of the Ellis-Sexton scale [6].

By keeping track of the W↵

�,• at the generation time
and writing it in the final event, one can perform an
NLO re-weighting by:

W
↵,new

�,B
=

B
new

Bold
⇤W

↵,old

�,B
,

W
↵,new

�,V
=

V
new

Vold
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↵,old

�,V
,

W
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�,R
=

R
new

Rold
⇤W

↵,old

�,R
. (14)

The final weight associated to the event can then be
calculated by combining those various pieces as it is
done for the estimation of the systematics uncertainty
(see Appendix of [25]). One can notice that the color-
connected Born is simply re-weighted by the ratio of
the Born which can lead to a breaking of the NLO
accuracy of the method. However such an approxima-
tion does not consist in an additional limitation of the
method since the re-weighting factors should di↵er only
if the two theories present a di↵erence in the relative
importance of the various color-flows (a case already
not handled at LO accuracy).

More generally, the possible drawbacks and limita-
tions on the statistical precision of the method are the
same as for the LO case. However, for NLO calculations
in MG5 aMC we face one additional source of statistical
uncertainty due to the method used to integrate the
virtual contribution. This method reduces the number
of computations of the virtual by using an approximate
of the virtual contribution based on the Born ampli-
tudes times a fitted parameter . It performs a sepa-
rate phase-space integration to get the di↵erence be-
tween the virtual and its approximation (full descrip-
tion of the method is presented in Section 2.4.3 of [6]).
Schematically it can be written as:
Z

(B + V) =

Z
(B + B) +

Z
(V � B). (15)

If it exists a value of  such that B ⇡ V , the second
integral is approximately zero and does not need to be
probed as often as the first integral (thanks to impor-
tance sampling [27]), reducing the amount of time used
in the evaluation of the loop-diagrams. However the re-
weighting proposed in Eq. 14 will highly enhance the
contribution of the second integral since each term of
the integral will be re-weighted by a di↵erent factor,
having a direct impact on the statistical uncertainty.

To reduce this e↵ect, we propose to use a slightly
more advanced re-weighting technique. We split the
contribution proportional to the Born (W↵

�,B
) in two

parts: W↵

�,BC
and W

↵

�,BB
. W↵

�,BC
is the part, propor-

tional to the Born, related to the one of the countert-
erms, while W

↵

�,BB
includes all of the other contribu-

tions (the Born itself and the approximate virtual). We
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phase-space with a universal constant since the MC
counter terms connect the born and the real in a non
local way. Nevertheless, as we will see later, the e↵ect
of the MC counter terms are quite mild, as expected
since their contribution to the total cross-section are
exactly zero by construction. This allows the Naive LO-
like method to nicely approximate the NLO di↵eren-
tial cross-section for many processes/theories where the
last equation needs to be valid only phase-space point
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matches the ratio of the Born and of the virtual in the
soft and/or collinear limit).
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In order to have an accurate NLO re-weighting method,
one should explicitly factorise out the dependence in
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–R– and in the finite piece of the virtual –V–). We
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The final weight associated to the event can then be
calculated by combining those various pieces as it is
done for the estimation of the systematics uncertainty
(see Appendix of [25]). One can notice that the color-
connected Born is simply re-weighted by the ratio of
the Born which can lead to a breaking of the NLO
accuracy of the method. However such an approxima-
tion does not consist in an additional limitation of the
method since the re-weighting factors should di↵er only
if the two theories present a di↵erence in the relative
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not handled at LO accuracy).

More generally, the possible drawbacks and limita-
tions on the statistical precision of the method are the
same as for the LO case. However, for NLO calculations
in MG5 aMC we face one additional source of statistical
uncertainty due to the method used to integrate the
virtual contribution. This method reduces the number
of computations of the virtual by using an approximate
of the virtual contribution based on the Born ampli-
tudes times a fitted parameter . It performs a sepa-
rate phase-space integration to get the di↵erence be-
tween the virtual and its approximation (full descrip-
tion of the method is presented in Section 2.4.3 of [6]).
Schematically it can be written as:
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If it exists a value of  such that B ⇡ V , the second
integral is approximately zero and does not need to be
probed as often as the first integral (thanks to impor-
tance sampling [27]), reducing the amount of time used
in the evaluation of the loop-diagrams. However the re-
weighting proposed in Eq. 14 will highly enhance the
contribution of the second integral since each term of
the integral will be re-weighted by a di↵erent factor,
having a direct impact on the statistical uncertainty.

To reduce this e↵ect, we propose to use a slightly
more advanced re-weighting technique. We split the
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phase-space with a universal constant since the MC
counter terms connect the born and the real in a non
local way. Nevertheless, as we will see later, the e↵ect
of the MC counter terms are quite mild, as expected
since their contribution to the total cross-section are
exactly zero by construction. This allows the Naive LO-
like method to nicely approximate the NLO di↵eren-
tial cross-section for many processes/theories where the
last equation needs to be valid only phase-space point
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systematics uncertainties:

d�
↵ = f1(x1, µF )f2(x2, µF )

h
W

↵

0 +W
↵

F
log (µF /Q)2 +

W
↵

R
log (µR/Q)2

i
d�

↵
, (9)

where the ↵ index is either R,S,C, SC,MC (see previ-
ous sub-section). Q is the Ellis-Sexton scale and d�

↵ is
the phase-space measure.

The expression of the W↵

0 , W
↵

F
, W↵

R
are given in the

appendix of [25] and are not repeated here. All those
expressions have linear dependencies in the Born, the
virtual, the real and the color connected Born BCC (this
term is defined in Eq. (3.24) of [26]). This allows us to
decompose the corresponding expressions as:5

W
↵

�
= B ⇤ C

↵

�,B
+ BCC ⇤ C

↵

�,BCC

+ V ⇤ C
↵

�,V
+R ⇤ C

↵

�,R
(10)

where the � index is either 0, R or F . The C
↵

�,• are ex-
pressions which do not depend of either the PDF/scale
or the matrix-element. From this expression we define
the following three terms:6

W
↵

�,B
⌘ B ⇤ C

↵

�,B
+ BCC ⇤ C

↵

�,BCC
, (11)

W
↵

�,V
⌘ V ⇤ C

↵

�,V
, (12)

W
↵

�,R
⌘ R ⇤ C

↵

�,R
. (13)

4 We also use the same (MC) counter terms as described in
that paper.
5 Due to the presence of multiple couter terms, the kine-

matic configuration on which the matrix-element is evaluated
is not unique: an implicit sum over such kinematical configu-
rations is assumed here and in the rest of the paper.
6 One can notice that W

↵
�,V = W

↵
�,R = 0 for � = R,F due

to the use of the Ellis-Sexton scale [6].

By keeping track of the W↵

�,• at the generation time
and writing it in the final event, one can perform an
NLO re-weighting by:

W
↵,new

�,B
=

B
new

Bold
⇤W

↵,old

�,B
,

W
↵,new

�,V
=

V
new

Vold
⇤W

↵,old

�,V
,

W
↵,new

�,R
=

R
new

Rold
⇤W

↵,old

�,R
. (14)

The final weight associated to the event can then be
calculated by combining those various pieces as it is
done for the estimation of the systematics uncertainty
(see Appendix of [25]). One can notice that the color-
connected Born is simply re-weighted by the ratio of
the Born which can lead to a breaking of the NLO
accuracy of the method. However such an approxima-
tion does not consist in an additional limitation of the
method since the re-weighting factors should di↵er only
if the two theories present a di↵erence in the relative
importance of the various color-flows (a case already
not handled at LO accuracy).

More generally, the possible drawbacks and limita-
tions on the statistical precision of the method are the
same as for the LO case. However, for NLO calculations
in MG5 aMC we face one additional source of statistical
uncertainty due to the method used to integrate the
virtual contribution. This method reduces the number
of computations of the virtual by using an approximate
of the virtual contribution based on the Born ampli-
tudes times a fitted parameter . It performs a sepa-
rate phase-space integration to get the di↵erence be-
tween the virtual and its approximation (full descrip-
tion of the method is presented in Section 2.4.3 of [6]).
Schematically it can be written as:
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If it exists a value of  such that B ⇡ V , the second
integral is approximately zero and does not need to be
probed as often as the first integral (thanks to impor-
tance sampling [27]), reducing the amount of time used
in the evaluation of the loop-diagrams. However the re-
weighting proposed in Eq. 14 will highly enhance the
contribution of the second integral since each term of
the integral will be re-weighted by a di↵erent factor,
having a direct impact on the statistical uncertainty.

To reduce this e↵ect, we propose to use a slightly
more advanced re-weighting technique. We split the
contribution proportional to the Born (W↵

�,B
) in two

parts: W↵

�,BC
and W

↵

�,BB
. W↵

�,BC
is the part, propor-

tional to the Born, related to the one of the countert-
erms, while W

↵

�,BB
includes all of the other contribu-

tions (the Born itself and the approximate virtual). We
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NLO example6 Mattelaer Olivier

predict the weight from any value of the coupling as
soon as the weights for two di↵erent values of the cou-
pling are known. This property can be used to further
speed up the computation of the weight.

Fig. 1 Di↵erential cross-section for pp ! ZW
+ at 13 TeV

LHC. This correspond to the Standard model plus the op-
erator O3W for two di↵erent couplings value. Only the SM
contribution plus the interference term is kept on this plot.
See text for details.

4.2 ZH associated production in the E↵ective Field
Theory at NLO

For our first NLO validation, we consider the asso-
ciated production of a Z and H boson in the EFT
as implemented in the Higgs Characterisation frame-
work/model [32]. We use two of the benchmarks in-
troduced in [33]: HD and HDder. In more details, the
e↵ective Lagrangian relevant for this example is

LHD = �
1

4

1

⇤
HWWZµ⌫Z

µ⌫
H (20)

LHDder = �
1

⇤
H@ZZ⌫@µZ

µ⌫
H +

(�
1

⇤
H@WW

+
⌫
@µW

�µ⌫
H + h.c.) , (21)

where ⇤ is the high energy scale (set to 1TeV), HWW ,
H@Z , H@W are dimensionless couplings (set to one).
H is the Higgs doublet field and Vµ⌫ = @µV⌫ � @⌫Vµ;
V = Z,W

�
,W

+.
In Figure 2 we present the di↵erential cross-section

for the transverse momentum of the Higgs and for its ra-
pidity. In both cases, we present the curve for the SM,
HD and HDder benchmarks. For the transverse mo-
mentum, we start from an HDder sample of events and
perform the re-weighting to the other scenarios. While

Fig. 2 Di↵erential cross-section for pp ! ZH at 13 TeV LHC
featuring both LO and NLO re-weighting methods. Events
have been showered with Herwig6 [31]. See text for details.

for the rapidity we present the plot where the origi-
nal sample is the HD theory. Each re-weighted curve
is then compared with a dedicated generation and the
associated ratio plot is displayed below with the sta-
tistical uncertainty expected for the generation of two
independent samples. The agreement between the two
is excellent for both the NLO accurate re-weighting and
the Naive LO-like re-weighting. In this case the NLO
QCD e↵ects factorise from the BSM ones and there-
fore the NLO accuracy of the Naive LO-like approach
can only be spoiled by MC counter terms –which are as
expected quite mild–. One can also compare the statis-
tical fluctuations between the MG5 aMC curves and the
one obtained by re-weighting. If you look at the top
plot (transverse momenta) for the HD case, it is clear
that the statistical fluctuations are more pronounced
for the curve obtained by re-weighting. This is an ex-
ample of enhancement of statistical uncertainty due to
the re-weighting as discussed around Eq. 3 since in the



Mattelaer Olivier MadGraph on HPC

•  Trick for (B)SM generation 
•  Speed up of the code at 0 cost.
•  MPI
•  GPU
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•  MadGraph is conservative on compiler flag 
option (-O1)

 10

GCC/Intel
Compiler option

Aggressive flag
•Using -Ofast 

➡ Code 30% faster at LO/NLO (tested on 
tt~jjj @LO and tt~j @NLO)

➡ Flag breaking standard (-> need validation)
➡ Validation needed but worth

Profile based compilation
•Marginal gain (1%) and very long setup (LO)
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•  Trick for (B)SM generation 
•  Speed up of the code at 0 cost.
•  MPI
•  GPU

 11
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MPI Strategy

 12

Rank

Time

Rank 0:
Scheduler/Collector

Rank 1:
Generate PS Points

Rank N:
Generate PS pointRank …

Collect iteration #1

Collect iteration #2

Write results

Generate PS point 
for first grid 

Discarded

Create new grid

Collected
second grid

First gridFirst grid

Create new grid
…

Next integral Next integral Next integral Next integral
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• One Single integral timing (gridpack creation)

Timing

 13

Integration time: No initialisation and submission time
 -> We need to group the channel to be slow enough!

Too many rank
(problem too simple) Too many rank

(problem too simple)

Not flat
Loss in efficiency

Flat = good scaling
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• Do not scale higher than 500-2000 rank

• Assume that all PS point takes the same time to compute

➡ If this is not the case, this method can induce bias

• Discarding events is at the end as bad as waiting doing nothing

• This method can run with slow communication and with 
different arch in the pool (good for Tier2)

Situation

 14

LO Strategy situation

NLO situation
• All phase-space point do not take the same amount of cpu 

time (variation by two order of magnitude

• Need other strategy for having the scaling
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HTC cluster HPC/MPI

Total waiting time

Total cpu time

Job granularity faster on queue

Infrastructure cost + 30% due to 
infiniband/OPA

GCC flag -march=native

HTC vs HPC

WINNER: The Turtle!
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•  Trick for (B)SM generation 
•  Speed up of the code at 0 cost.
•  MPI
•  GPU
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Plan of my talk

plan
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•All SM processes tested 
in 2013

•  Efficiency and/or more 
jet should be possible 
with latest GPU

 18

Status

Presented by J. Kanzaki at GPU2016 in Sep.26, 2016

Ratio of Total Integration Time

•Comparison of total execution time for equivalent 
BASES programs on CPU (core i7 2.7GHz, single core) 
and GPU (C2075) (2011).

11

• GPU/CPU

• GPU (C2085) [2011]

• CPU: i7 (2.7Ghz) [2011]

• High gain (especially at low 
multiplicities
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Ratio of process time (C2075 & Titan)

16

•Preliminary results on C2075 and Titan.

Number of Gluons in Final State
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 + n-gluons+ W→ du Very preliminary

BASES: CPU / Titan
BASES: CPU / C2075
SPRING: CPU / Titan
SPRING: CPU / C2075
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CPU vs GPU

 20

CPU GPU

Efficiency

Cost

Efficiency/cost ??? ???

Code development CUDA/MEM

Multiplicities

NO
clear winner
Likely GPU
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Conclusion

•  HTC
•  Store more to compute less

•  HPC/MPI
•  Working but we should not push in that 
direction

• I’m happy to help to deploy it on existing 
HPC farm

•  GPU
•  Promising result but seem to suffer from a 
lack of interest


