
High-multiplicity multi-jet merging with

HPC technology

Stefan Hoeche, Xiangyang Ju, Jim Kowalkowski, Stephen Mrenna,
Tom Peterka, Stefan Prestel, Holger Schulz

Physics Event Generator Computing Workshop, CERN, November
28, 2018

1/14



Motivation

arXiv:1409.8639 [hep-ex]

jetsN

0 1 2 3 4 5 6 7 8

E
v
e

n
ts

10

210

310

410

510

610

710

810

910

1010
-1= 7 TeV, 4.6 fbsData, 

(ALPGEN)νe→W

tt

Other

ee→Z

Multijets

(SHERPA)νe→W

Pred sys

stat⊗Pred sys

ATLAS

jetsN

0 1 2 3 4 5 6 7 8

P
re

d
 /

 D
a

ta

0.5

1

1.5

I LHC experiments can see 8 jets
I High precision predictions for e.g. searches should reflect that
I Can we do this on HPC?

2/14



Trials in (LO) ME level events

0 50000 100000 150000 200000 250000 300000
Ntrials

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

1/
N

dN
/d

N
tri

al
s

W+0j
W+1j
W+2j
W+3j
W+4j
W+5j
W+6j
W+7j
W+8j

I Distribution of trials gets flatter with number of jets.
I Huge variation of Matrix Element (ME)-level compute time.
I Traditional Sherpa way of doing all in one go just does not scale.

(See also T. Childers et al. doi:10.1088/1742-6596/898/7/072044)
3/14

doi :10.1088/1742-6596/898/7/072044


Our approach to event generation on HPC
I Use Sherpa to generate ME-level events (Les Houches like format)
I XML output is not a good solution for HPC machines
I Use HDF5 instead:

Parallel write and read
Binary storage of data, built-in compression

I Particle level event generation and merging with Pythia8 — we
use ASCR’s DIY technology for MPI parallelisation here

,DIY: LHAPDF, Pythia8, Rivet

LHE

M
E

 l
e

v
e

l
P

a
rt

ic
le

 l
e

v
e

l

HDF5Sherpa, MPI

4/14



HDF5 storage
Dataset data type

nparticles int
scale double
aqcd double

. . .
npLO double
npNLO double
weight double
trials double

Table: Event properties

Dataset data type

id int
status int
mother1 int
color1 int
px double

. . .
lifetime double
spin double

Table: Particle properties

Dataset data type

start size t
end size t

Table: Lookup-table

I Trivial (parallel) storage of properties in 1D datasets of basic types
I Trivial (parallel) access by index, connection between event and

particle properties by lookup table
5/14



Technicalities

I Requirement: libhdf5 (apt-get / dnf install, standard on HPC)

I Header-only library HighFive github.com/BlueBrain/HighFive

I N.b. very nice python library h5py, works beautifully with numpy
(used this initally to convert LHE XML files to hdf5 but this is
quite cumbersome)

I Header-only library DIY used in particle level simulation
http://diatomic.github.io/diy

I Computing model based on “blocks”

I Does all the low-level MPI communication for you

6/14

github.com/BlueBrain/HighFive
http://diatomic.github.io/diy


W+jets example
I W+jets at

√
s = 14 TeV simulation.

I Merging scale is at 20 GeV.

I The simulation is at leading order, the merging scheme is
CKKW-L.

I ME-level event generation done at SLAC cluster of Xeon E5 CPUs.

I Particle level event generation on NERSC Cori using Haswell
nodes.

Njets 0 1 2 3 4 5 6 7 8

Nevents 65M 32M 16M 8M 4M 2M 1M 500k 250k
HDF5 (9) [GB] 7.1 4.9 3.0 1.8 1 0.6 0.3 0.2 0.1
HDF5 (0) [GB] 26 16 9.1 5.2 2.9 1.9 1.2 0.62 0.25

I Number of quarks limited to ≤ 6 for Njets = 6, 7

I Number of quarks limited to ≤ 4 for Njets = 8

7/14



CPU cost analysis
I Process ME-samples with different jet multiplicities separately.
I Compare ME-level and particle level event simulation.
I Note that the measure is CPUh per 1M events

0 1 2 3 4 5 6 7 8
10−1

100

101

102

103

104

105

106

C
P

U
h

/M
ev

t

Event generation cost for W+jets at 14 TeV

ME level

Particle level

0 1 2 3 4 5 6 7 8
Number of additional jets

1

10

100

1000

10000

M
E

/P
ar

ti
cl

e

8/14



Benefits

I The CPU expensive part of the simulation is stored in a
parton-shower independent format.

I Running the particle level simulation now cheap in comparison,
allows e.g.

PDF re-weighting
All sorts of variation studies
Tuning and similar parameter space exploration

I Can think of a hybrid strategy for event generation:

Do low multiplicity as per usual
Generate higher multiplicities with this approach

9/14



Jet rates

∑
0j
1j
2j
3j
4j
5j
6j
7j
8j

10−2

10−1

1

10 1

10 2

10 3

10 4

Differential 0 → 1 jet resolution

d
σ

/
d

lo
g 10

(d
01

/
G

eV
)

[p
b]

0 0.5 1 1.5 2 2.5 3 3.510−2

10−1

1

log10(d01/GeV)

R
at

io

∑
0j
1j
2j
3j
4j
5j
6j
7j
8j

10−2

10−1

1

10 1

10 2

10 3

10 4

Differential 2 → 3 jet resolution

d
σ

/
d

lo
g 10

(d
23

/
G

eV
)

[p
b]

0 0.5 1 1.5 2 2.5 3 3.510−2

10−1

1

log10(d23/GeV)

R
at

io

10/14



Jet rates

∑
0j
1j
2j
3j
4j
5j
6j
7j
8j

10−2

10−1

1

10 1

10 2

10 3

10 4

Differential 4 → 5 jet resolution

d
σ

/
d

lo
g 10

(d
56

/
G

eV
)

[p
b]

0 0.5 1 1.5 2 2.5 3 3.510−2

10−1

1

log10(d56/GeV)

R
at

io

∑
0j
1j
2j
3j
4j
5j
6j
7j
8j

10−2

10−1

1

10 1

10 2

10 3

10 4

Differential 7 → 8 jet resolution

d
σ

/
d

lo
g 10

(d
78

/
G

eV
)

[p
b]

0 0.5 1 1.5 2 2.5 3 3.510−2

10−1

1

log10(d78/GeV)

R
at

io

11/14



Scaling
I Scaling of pure particle level event generation for total samples
I Software stack compiled on NERSC Cori (gcc7.3), measurements

done on Haswell nodes
I N.b. with 16 nodes (512 ranks): 15 minutes — with

HepMC+Rivet as in plots above: 25 minutes

4 8 16 32
Nnodes (32 ranks per node)

100

200

300

400
500
600
700

t[s
]

W + 0j
W + 1j
W + 2j

W + 3j
W + 4j
W + 5j

W + 6j
W + 7j
W + 8j

Njets 0 1 2 3 4 5 6 7 8

Nevents 65M 32M 16M 8M 4M 2M 1M 500k 250k

12/14



Summary and outlook

I Prototype for relatively efficient merged LO W+8j event
simulation workflow

I For pragmatic reasons: Sherpa for ME level event generation and
Pythia8 for particle level simulation

Store CPU expensive part (ME-level) on disk
Particle level run-time up to 4 orders of magnitude faster than ME
Main technologies used for parallelisation: DIY and HDF5

I Although we use technology aimed at HPC architectures, the code
runs well on laptops, clusters etc.

I Want to understand scaling better, investigate with vtune

I Look at Z+jets, higgs, ttbar next.

I Would a hybrid strategy for event generation be a good idea?

13/14



Acknowledgement

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing
Research and Office of HEP, Scientific Discovery through Advanced
Computing (SciDAC) program.

14/14



Timing and memory usage (Sherpa 3.x.y + HDF5)

LO ME level event generation only (Comix; γ,Z , h, µ, νµ, τ, ντ off)

Process W++ 1j 2j 3j 4j
RAM Usage 21 MB 43 MB 48 MB 85 MB
Init/startup time <1s / <1s <1s / <1s 2s / <1s 32s / <1s
Integration time 8×4m26s 16×16m42s 32×20m26s 64×1h32m
MC uncertainty 0.22% 0.46% 0.89% 0.97%
Unweighting eff 6.59 · 10−3 7.50 · 10−4 2.71 · 10−4 1.47 · 10−4

10k evts 1m 2s 15m 5s 1h 3m 5h 56m

Numbers generated on dual 8-core Intel R© Xeon R© E5-2660 @ 2.20GHz

Process W++ 5j 6j∗ 7j∗ 8j†

RAM Usage 189 MB 484 MB 1.32 GB 1.32 GB
Init/startup time 3m5s / 1s 24m52s / 5s 3h6m / 18s 5h55m / 29s
Integration time 128×4h38m 256×13h53m 512×19h0m 1024×23h8m
MC uncertainty 1.0% 0.99% 2.38% 4.68%
Unweighting eff 9.56 · 10−5 7.66 · 10−5 7.20 · 10−5 7.51 · 10−5

10k evts 24h 40m 2d 11h 10d 15h 78d 1h

Numbers generated on dual 8-core Intel R© Xeon R© E5-2660 @ 2.20GHz
∗,† Number of quarks limited to ≤6/4



Plans for NLO event generation

I For large class of processes, NLO fixed-order and MC@NLO agree
well with each other and with MEPS@NLO (↗ e.g. plots below)

I Indicates best technical option: Store MC@NLO simulated events
I Pro: Parton-shower independent results
I Con: Restricted possibility for variations

I H+jet @ LHC 13 TeV

H+jet,
√

s=13 TeV

anti-kT R=0.7

Sh
er

pa
+B

la
ck

H
at

MEPS@NLO (1)2j
MCNLO
NLO

10� 7

10� 6

10� 5

10� 4

10� 3

10� 2

ds
/d

p T
,j

[p
b/

G
eV

]

200 400 600 800 1000 1200 1400 1600 1800 2000

0.6

0.8

1

1.2

1.4

pT, j [GeV]

R
at

io
to

M
EP

S@
N

LO

I Z+jet @ LHC 13 TeV




