
High-multiplicity multi-jet merging with

HPC technology

Stefan Hoeche, Xiangyang Ju, Jim Kowalkowski, Stephen Mrenna,
Tom Peterka, Stefan Prestel, Holger Schulz

Physics Event Generator Computing Workshop, CERN, November
28, 2018

1/14



Motivation

arXiv:1409.8639 [hep-ex]
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I LHC experiments can see 8 jets
I High precision predictions for e.g. searches should reflect that
I Can we do this on HPC?
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Trials in (LO) ME level events
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I Distribution of trials gets flatter with number of jets.
I Huge variation of Matrix Element (ME)-level compute time.
I Traditional Sherpa way of doing all in one go just does not scale.

(See also T. Childers et al. doi:10.1088/1742-6596/898/7/072044)
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Our approach to event generation on HPC
I Use Sherpa to generate ME-level events (Les Houches like format)
I XML output is not a good solution for HPC machines
I Use HDF5 instead:

Parallel write and read
Binary storage of data, built-in compression

I Particle level event generation and merging with Pythia8 — we
use ASCR’s DIY technology for MPI parallelisation here

,DIY: LHAPDF, Pythia8, Rivet
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HDF5Sherpa, MPI
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HDF5 storage
Dataset data type

nparticles int
scale double
aqcd double

. . .
npLO double
npNLO double
weight double
trials double

Table: Event properties

Dataset data type

id int
status int
mother1 int
color1 int
px double

. . .
lifetime double
spin double

Table: Particle properties

Dataset data type

start size t
end size t

Table: Lookup-table

I Trivial (parallel) storage of properties in 1D datasets of basic types
I Trivial (parallel) access by index, connection between event and

particle properties by lookup table
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Technicalities

I Requirement: libhdf5 (apt-get / dnf install, standard on HPC)

I Header-only library HighFive github.com/BlueBrain/HighFive

I N.b. very nice python library h5py, works beautifully with numpy
(used this initally to convert LHE XML files to hdf5 but this is
quite cumbersome)

I Header-only library DIY used in particle level simulation
http://diatomic.github.io/diy

I Computing model based on “blocks”

I Does all the low-level MPI communication for you
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W+jets example
I W+jets at

√
s = 14 TeV simulation.

I Merging scale is at 20 GeV.

I The simulation is at leading order, the merging scheme is
CKKW-L.

I ME-level event generation done at SLAC cluster of Xeon E5 CPUs.

I Particle level event generation on NERSC Cori using Haswell
nodes.

Njets 0 1 2 3 4 5 6 7 8

Nevents 65M 32M 16M 8M 4M 2M 1M 500k 250k
HDF5 (9) [GB] 7.1 4.9 3.0 1.8 1 0.6 0.3 0.2 0.1
HDF5 (0) [GB] 26 16 9.1 5.2 2.9 1.9 1.2 0.62 0.25

I Number of quarks limited to ≤ 6 for Njets = 6, 7

I Number of quarks limited to ≤ 4 for Njets = 8
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CPU cost analysis
I Process ME-samples with different jet multiplicities separately.
I Compare ME-level and particle level event simulation.
I Note that the measure is CPUh per 1M events
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Benefits

I The CPU expensive part of the simulation is stored in a
parton-shower independent format.

I Running the particle level simulation now cheap in comparison,
allows e.g.

PDF re-weighting
All sorts of variation studies
Tuning and similar parameter space exploration

I Can think of a hybrid strategy for event generation:

Do low multiplicity as per usual
Generate higher multiplicities with this approach
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Jet rates
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Jet rates
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Scaling
I Scaling of pure particle level event generation for total samples
I Software stack compiled on NERSC Cori (gcc7.3), measurements

done on Haswell nodes
I N.b. with 16 nodes (512 ranks): 15 minutes — with

HepMC+Rivet as in plots above: 25 minutes
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Summary and outlook

I Prototype for relatively efficient merged LO W+8j event
simulation workflow

I For pragmatic reasons: Sherpa for ME level event generation and
Pythia8 for particle level simulation

Store CPU expensive part (ME-level) on disk
Particle level run-time up to 4 orders of magnitude faster than ME
Main technologies used for parallelisation: DIY and HDF5

I Although we use technology aimed at HPC architectures, the code
runs well on laptops, clusters etc.

I Want to understand scaling better, investigate with vtune

I Look at Z+jets, higgs, ttbar next.

I Would a hybrid strategy for event generation be a good idea?
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Timing and memory usage (Sherpa 3.x.y + HDF5)

LO ME level event generation only (Comix; γ,Z , h, µ, νµ, τ, ντ off)

Process W++ 1j 2j 3j 4j
RAM Usage 21 MB 43 MB 48 MB 85 MB
Init/startup time <1s / <1s <1s / <1s 2s / <1s 32s / <1s
Integration time 8×4m26s 16×16m42s 32×20m26s 64×1h32m
MC uncertainty 0.22% 0.46% 0.89% 0.97%
Unweighting eff 6.59 · 10−3 7.50 · 10−4 2.71 · 10−4 1.47 · 10−4

10k evts 1m 2s 15m 5s 1h 3m 5h 56m

Numbers generated on dual 8-core Intel R© Xeon R© E5-2660 @ 2.20GHz

Process W++ 5j 6j∗ 7j∗ 8j†

RAM Usage 189 MB 484 MB 1.32 GB 1.32 GB
Init/startup time 3m5s / 1s 24m52s / 5s 3h6m / 18s 5h55m / 29s
Integration time 128×4h38m 256×13h53m 512×19h0m 1024×23h8m
MC uncertainty 1.0% 0.99% 2.38% 4.68%
Unweighting eff 9.56 · 10−5 7.66 · 10−5 7.20 · 10−5 7.51 · 10−5

10k evts 24h 40m 2d 11h 10d 15h 78d 1h

Numbers generated on dual 8-core Intel R© Xeon R© E5-2660 @ 2.20GHz
∗,† Number of quarks limited to ≤6/4



Plans for NLO event generation

I For large class of processes, NLO fixed-order and MC@NLO agree
well with each other and with MEPS@NLO (↗ e.g. plots below)

I Indicates best technical option: Store MC@NLO simulated events
I Pro: Parton-shower independent results
I Con: Restricted possibility for variations

I H+jet @ LHC 13 TeV
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I Z+jet @ LHC 13 TeV




