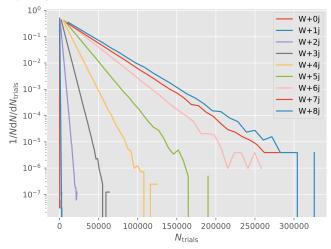

# High-multiplicity multi-jet merging with HPC technology

Stefan Hoeche, Xiangyang Ju, Jim Kowalkowski, Stephen Mrenna, Tom Peterka, Stefan Prestel, **Holger Schulz** 

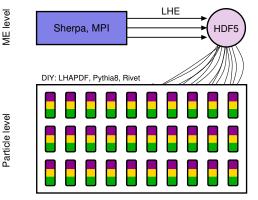
 $\begin{array}{c} \mbox{Physics Event Generator Computing Workshop, CERN, November} \\ \mbox{28, 2018} \end{array}$ 




## Motivation



- ▶ LHC experiments can see 8 jets
- ▶ High precision predictions for e.g. searches should reflect that
- ▶ Can we do this on HPC?


## Trials in (LO) ME level events



- ▶ Distribution of trials gets flatter with number of jets.
- ▶ Huge variation of Matrix Element (ME)-level compute time.
- Traditional Sherpa way of doing all in one go just does not scale. (See also T. Childers et al. doi:10.1088/1742-6596/898/7/072044)

#### Our approach to event generation on HPC

- ▶ Use Sherpa to generate ME-level events (Les Houches like format)
- ▶ XML output is not a good solution for HPC machines
- ▶ Use HDF5 instead:
  - Parallel write and read
  - Binary storage of data, built-in compression
- Particle level event generation and merging with Pythia8 we use ASCR's DIY technology for MPI parallelisation here



#### HDF5 storage

| Dataset                 | data type | Data   | iset data type      |  |  |
|-------------------------|-----------|--------|---------------------|--|--|
| NPARTICLES              | int       | ID     | int                 |  |  |
| SCALE                   | double    | STAT   | rus int             |  |  |
| AQCD                    | double    | MOT    | Herl int            |  |  |
|                         |           | COLO   | DR1 int             |  |  |
| NPLO                    | double    | PX     | double              |  |  |
| NPNLO                   | double    |        |                     |  |  |
| WEIGHT                  | double    | LIFE   | TIME double         |  |  |
| TRIALS                  | double    | SPIN   | double              |  |  |
| Table: Event properties |           | Table: | Particle properties |  |  |

| Dataset | data type |
|---------|-----------|
| START   | size_t    |
| END     | size_t    |

| Table: | Lookup-table |
|--------|--------------|
|--------|--------------|

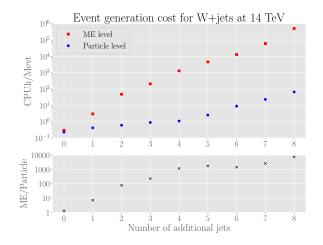
▶ Trivial (parallel) storage of properties in 1D datasets of basic types

 Trivial (parallel) access by index, connection between event and particle properties by lookup table

#### Technicalities

- ▶ Requirement: LIBHDF5 (apt-get / dnf install, standard on HPC)
- ► Header-only library HighFive github.com/BlueBrain/HighFive
- ▶ N.b. very nice python library H5PY, works beautifully with numpy (used this initially to convert LHE XML files to hdf5 but this is quite cumbersome)
- Header-only library DIY used in particle level simulation http://diatomic.github.io/diy
- ▶ Computing model based on "blocks"
- ▶ Does all the low-level MPI communication for you

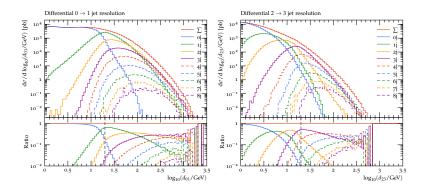
## W+jets example


- W+jets at  $\sqrt{s} = 14$  TeV simulation.
- ▶ Merging scale is at 20 GeV.
- ▶ The simulation is at leading order, the merging scheme is CKKW-L.
- ▶ ME-level event generation done at SLAC cluster of Xeon E5 CPUs.
- Particle level event generation on NERSC Cori using Haswell nodes.

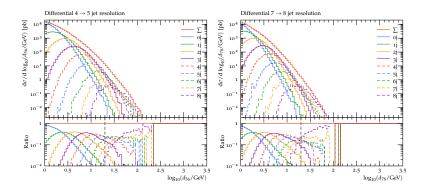
| $N_{ m jets}$       | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7    | 8    |
|---------------------|-----|-----|-----|-----|-----|-----|-----|------|------|
| $N_{\text{events}}$ | 65M | 32M | 16M | 8M  | 4M  | 2M  | 1M  | 500k | 250k |
| HDF5 (9) $[GB]$     | 7.1 | 4.9 | 3.0 | 1.8 | 1   | 0.6 | 0.3 | 0.2  | 0.1  |
| HDF5 $(0)$ [GB]     | 26  | 16  | 9.1 | 5.2 | 2.9 | 1.9 | 1.2 | 0.62 | 0.25 |

- ▶ Number of quarks limited to  $\leq 6$  for  $N_{\text{jets}} = 6, 7$
- ▶ Number of quarks limited to  $\leq 4$  for  $N_{\text{jets}} = 8$

#### CPU cost analysis

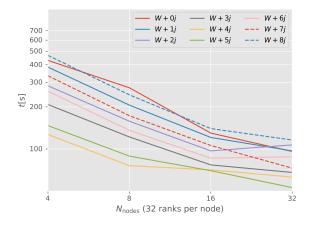

- ▶ Process ME-samples with different jet multiplicities separately.
- ▶ Compare ME-level and particle level event simulation.
- ▶ Note that the measure is CPUh per 1M events




#### Benefits

- ► The CPU expensive part of the simulation is stored in a parton-shower independent format.
- ▶ Running the particle level simulation now cheap in comparison, allows e.g.
  - PDF re-weighting
  - All sorts of variation studies
  - Tuning and similar parameter space exploration
- ▶ Can think of a hybrid strategy for event generation:
  - Do low multiplicity as per usual
  - Generate higher multiplicities with this approach

#### Jet rates




#### Jet rates



# Scaling

- ► Scaling of pure *particle level* event generation for *total* samples
- ▶ Software stack compiled on NERSC Cori (gcc7.3), measurements done on Haswell nodes
- ► N.b. with 16 nodes (512 ranks): 15 minutes with HEPMC+RIVET as in plots above: 25 minutes



#### Summary and outlook

- ▶ Prototype for relatively efficient merged LO W+8j event simulation workflow
- ▶ For pragmatic reasons: Sherpa for ME level event generation and Pythia8 for particle level simulation
  - Store CPU expensive part (ME-level) on disk
  - Particle level run-time up to 4 orders of magnitude faster than ME
  - Main technologies used for parallelisation: DIY and HDF5
- ▶ Although we use technology aimed at HPC architectures, the code runs well on laptops, clusters etc.
- ▶ Want to understand scaling better, investigate with vtune
- ▶ Look at Z+jets, higgs, ttbar next.
- ▶ Would a hybrid strategy for event generation be a good idea?

### Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research and Office of HEP, Scientific Discovery through Advanced Computing (SciDAC) program.

## Timing and memory usage (Sherpa 3.x.y + HDF5)

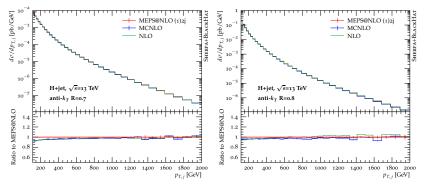
LO ME level event generation only (Comix;  $\gamma$ , Z, h,  $\mu$ ,  $\nu_{\mu}$ ,  $\tau$ ,  $\nu_{\tau}$  off)

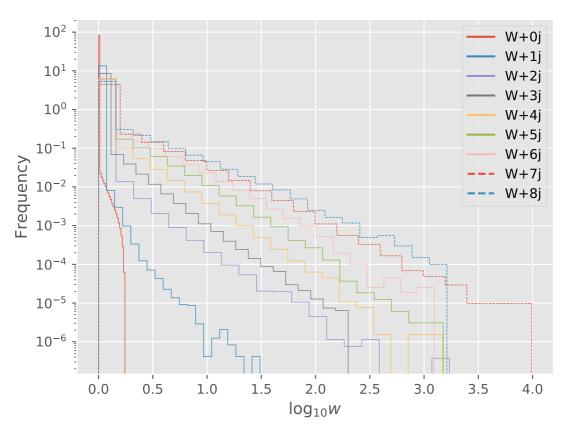
| Process W <sup>+</sup> + | 1j                   | 2ј                      | Зј                   | 4j                   |
|--------------------------|----------------------|-------------------------|----------------------|----------------------|
| RAM Usage                | 21 MB                | 43 MB                   | 48 MB                | 85 MB                |
| Init/startup time        | <1s $/$ $<$ 1s       | $<\!\!1s$ $/$ $<\!\!1s$ | 2s / < 1s            | 32s / < 1s           |
| Integration time         | 8×4m26s              | 16×16m42s               | 32×20m26s            | 64×1h32m             |
| MC uncertainty           | 0.22%                | 0.46%                   | 0.89%                | 0.97%                |
| Unweighting eff          | $6.59 \cdot 10^{-3}$ | $7.50 \cdot 10^{-4}$    | $2.71 \cdot 10^{-4}$ | $1.47 \cdot 10^{-4}$ |
| 10k evts                 | 1m 2s                | 15m 5s                  | 1h 3m                | 5h 56m               |

Numbers generated on dual 8-core Intel® Xeon® E5-2660 @ 2.20GHz

| Process $W^++$    | 5ј                   | 6ј*                  | 7j*                  | 8j†                  |
|-------------------|----------------------|----------------------|----------------------|----------------------|
| RAM Usage         | 189 MB               | 484 MB               | 1.32 GB              | 1.32 GB              |
| Init/startup time | 3m5s / 1s            | 24m52s / 5s          | 3h6m / 18s           | 5h55m / 29s          |
| Integration time  | 128×4h38m            | 256×13h53m           | 512×19h0m            | 1024×23h8m           |
| MC uncertainty    | 1.0%                 | 0.99%                | 2.38%                | 4.68%                |
| Unweighting eff   | $9.56 \cdot 10^{-5}$ | $7.66 \cdot 10^{-5}$ | $7.20 \cdot 10^{-5}$ | $7.51 \cdot 10^{-5}$ |
| 10k evts          | 24h 40m              | 2d 11h               | 10d 15h              | 78d 1h               |

Numbers generated on dual 8-core Intel® Xeon® E5-2660 @ 2.20GHz


\*<sup>,†</sup> Number of quarks limited to  $\leq 6/4$ 


#### Plans for NLO event generation

- ► For large class of processes, NLO fixed-order and MC@NLO agree well with each other and with MEPS@NLO ( > e.g. plots below)
- ► Indicates best technical option: Store MC@NLO simulated events
  - ► Pro: Parton-shower independent results
  - Con: Restricted possibility for variations



► Z+jet @ LHC 13 TeV



