

Physics Event Generator Computing

Workshop

Hackathon

Servesh Muralidharan
IT-DI-WLCG, UP Team

CERN

28 Nov 2018

1

Logistics
 Connect to machines at CERN to run the exercises: user name

your CERN sso

 Thanks to the teams at CERN for providing machines and access,

including:

Luca Atzori Guillermo Izquierdo

Maria Girone Alberto Di Meglio

Fons Rademakers Eric Bonfillou

2

Concept of an Ideal Program
 Readability Vs Performance

 Compute Algorithm
 20% – 30% of code but has >90% of run time

 Most optimizations are applied here

 Big O notation
• Describes the worst case performance in terms of input size

• Can represent time or space

• Example: O(n) – Linear (Finding an item in an unsorted array)

 Extremely readable code for compilers
• Elegance and Obscurity

• Compilers will love it and we only care about performance!!!

• Be nice and use explicit comments for fellow human beings to understand

 Glue code
 70% – 80% of code but has <10% of run time

 Contains code used for structuring and connecting different blocks

 Extremely readable code for humans
• Compilers will hate you but that’s okay, we don’t care about performance here

3

http://a.co/d/cubvcv1

CPU

Essentials: Computer Architecture
 Stored-Program computer

 Von Neumann model

 Program and data are stored in memory and then processed

Control Unit

ALU

Memory Unit

Input Output

4

http://a.co/d/eaKwu7Q

Decode

Fetch

Instruction processing

Step What happens

1 Fetch Get the instruction (from memory or

cache)

2 Decode Translate the x86 machine codes op

codes into (possibly multiple) internal

operations

3 Execute Do the instruction (may require memory

access)

4 Writeback Write the result to storage or make visible

in the architectural registers (Retirement)

https://commons.wikimedia.org/wiki/File:Intel_Nehalem_arch.svg

Writeback

Execute

5

http://a.co/d/a7YZpCm

Cache lines
 Data is always fetched in units of a cache line

 On x86 cache line size is 64 bytes

 Usually data read from main memory still be

stored in the cache, so even if you need less

than the size of a cache line 64 bytes will be

fetched

 Caches have to be kept consistent if the same

cache line is present in multiple caches: e.g.

those associated to different cores or different

processor sockets within a machine

6

https://commons.wikimedia.org/wiki/File:Cache,associative-read.svg

https://www.akkadia.org/drepper/cpumemory.pdf

Memory Hierarchy
Processor Core

(Registers)

L1I

(32 KB)

L1D

(32 KB)

L2

(256 KB)

Shared L3

(8192 KB)

Local memory

(relatively large)

4 cycles

12 cycles

~36 cycles

200-450

cycles

Approximate memory latencies

on Intel Haswell CPUs

Adapted from S. Jarp, A. Nowak

M
e
m

o
ry

 s
iz

e
 i
n
c
re

a
s
e
s

M
e
m

o
ry

 a
c
c
e
s
s
 l
a
te

n
c
y
 d

e
c
re

a
s
e
s

7

Few sec

<1 Min

Few mins

Few hours

Few days

Memory and Disk
 Today we are concerned mostly with

main memory (RAM) when talking
storage outside the processor
 Typically 1 to 100s of Gigabytes in size

 However often data will be on a storage
device like:
 Object storage, Disks, SSDs, NVMe devices

 These will have latencies from 50 to
+100,000 times longer than main memory

 But often much larger capacity, multiple
terabytes or petabytes

8

1st form of HW Parallelism: Instruction level parallelism

(Absolutely Free*)

 Multiple instructions can be decoded per
cycle

 Multiple instructions can be dispatched
 Because there are multiple execution units

(ports) they may execute simultaneously

 The execution units take different types of
instructions when the port is available

 Called superscalar architecture

https://commons.wikimedia.org/wiki/File:Intel_Nehalem_arch.svg

Execution

Units

9

2nd form of HW Parallelism: Pipelining

(Absolutely Free*)

Instruction 1 2

Fetch X X

Decode X X

Execute X X

Write X X

Clock 1 2 3 4 5 6 7 8

Instruction 1 2

Fetch X X

Decode X X

Execute X X

Write X X

Clock 1 2 3 4 5

With pipelining approachWithout pipelining approach

10

 Only possible if the execution flow of the code is understood by the processor

 Ex: Compiler hints, Strided memory access, Loop bounds

3rd form of HW Parallelism: Vector Instructions

 There are vector registers
 e.g. in processors with Intel AVX there

are registers YMM0 – YMM15 which
are 256 bits in length

 Example of one instruction that
operates on multiple data

 Data may be placed into these in
various ways
 Scalar (just some of the width for one

value)

 Packed (a number of values one after
the other)

11

single single single singlePacked

Scalar

Packed

Scalar

A1 A2 A3 A4

B1 B2 B3 B4

A1 op B1 A2 op B2 A3 op B3 A4 op B4

=

⊙

single

Double Double

Double

4B 4B 4B 4B

128b Vector Instruction

4th form of HW Parallelism: Hardware threads

A.K.A Resource Multiplexing

HW Thread 2

HW Thread 1
Execution

Port
LLC ICACHE

DCACHE

Memory

Control

Register

Execution

Port

LLC ICACHE

DCACHE

Memory

Control

Register
 Hardware thread

 The register files and instruction pointer to

provide the architectural execution

environment. e.g. rax, rbx, the instruction

pointer and other registers

 One ore more hardware threads share the

resources of a core

 Instruction executed by a core is tagged as

belonging to the associated hardware thread

 Intel called this hyperthreading (HT) or

generally Simultaneous Multithreading (SMT)

12

5th form of HW Parallelism: Multicore

 Core

 The execution logic, cache, and facilities for

storing execution state. e.g. register files

https://commons.wikimedia.org/wiki/File:

Dual_Core_Generic.svg

13

6th form of HW Parallelism and on...

Multisocket, Cluster, Grid…

https://commons.wikimedia.org/wiki/File:Processor_board_cray-2_hg.jpg

https://commons.wikimedia.org/wiki/File:High_Performance_Computing_Center_Stuttgart_HLRS_2015_10_

Cray_XC40_Hazel_Hen.jpg

https://sciencenode.org/feature/large-

hadron-colliders-worldwide-computer.php

14

The Compiler

 Compiler is the bridge between your
code and the hardware

 Consist of a front-end and back-end

 Front-end:
 Language focused

 Back-end:
 Machine focus: architecture specific analysis

 Optimization

 Code generation in native machine code

Source File

Compiler

Object file

Executable

15

http://a.co/d/dP5dTg5

Compiler

 Compiler is one of the layers which can help
in having well performing code

 Compiler features can give you performance
with no change of your code (‘for free’)

 Each compiler is different

 Different releases of a compiler can behave
differently, to give different performance or even
different results

16

Compiler
 Provide your compiler as much information as

possible
 Typically make loops explicit

• Let the compiler generate code which can reason on
the number of iterations
• Don’t break out of the loop early

• Try to keep memory access contiguous

• Keep arithmetic operations together

 Some flags may change results

 Tune for your target architecture if you can

17

Floating Point essentials
 Floating point numbers are a way to represent real numbers,

stored as a significand (mantissa), exponent and sign

 N = (-1)s x 1.ccc… x bqqq…

 Finite number of floating point numbers of a given width (e.g. doubles)
whereas an uncountable number of real numbers

 Therefore while the FP operations are precisely defined by IEEE-
754 the result will usually need to be rounded.
 Usually b = 2 and ccc.. and qqq… are stored as binary representation.

b=10 (decimal) is also specified by the standard

 Some rational numbers which can be represented as terminating
decimals are recurring when using base 2

• numbers like 0.1 can only be represented as a truncated number (i.e. are
rounded) in floating point

18

http://a.co/d/5XZjNFv

Floating Point
 Some basic properties of operations on real numbers

do not hold on floating point numbers
 E.g. associativity. Generally:

Where

denotes floating point addition,

denotes floating point multiplication

(aÅb)Å c ¹ aÅ (bÅ c)

Å

(aÄb) Ä c ¹ aÄ (bÄ c)

Ä

19

Matrix Multiplication

A= B=

C=AB=

20

Why Matrix Multiplication???
 Matrix multiplication is fundamental to large numerical computations

 Large math problems can be decomposed into linear equations and then solved using MM

 Motivation behind the development of high performance math libraries such as BLAS, MKL, etc./

 LINPACK benchmark used to rank Supercomputers is based on matrix operations

 Computer scientists are obsessed with matrix multiplication optimizations
 For very good reasons!!!

 The naive version has O(n3) complexity
• However, several algorithms that do it faster already exists

 Arithmetic Intensity
• Naïve algorithm has a very low Floating point operations per byte

• Fundamental computation involves 2 operations for every 3 numbers

 Several hundred papers

 For the hands on we will use matrix multiplication as an illustration
 However, if you want to do matrix multiplication in your application use a common library

• If you want to know why we can give you more than hundred different reasons (with proof!!!)

21

First Attempt

for(size_t i=0;i<n;++i) {

for(size_t j=0;j<p;++j) {

sum = 0;

for(size_t k=0;k<m;++k) {

sum += a[i*m+k] * b[k*p+j];

}

c[i*p+j] = sum;

}

}

= *
Ci

j

Ai

k

Bk

j

22

Possible memory layout

 e.g. A, B and C are 3 x 3 matrix of doubles

A

B

C

Possible cache

line boundary

Padding or used

by allocator

Row

Major

23

Memory access pattern
i=0, j=0, k=0 i=0, j=0, k=1

i=0, j=0, k=2 i=0, j=1, k=0

C00

B00

A00

C00

B10

A01

C00

B20

A02

C01

B01

A00

24

Improvement: Order memory access

 By ordering the access differently can

improve cache locality

 Try to access memory in a previously access

cache line (e.g. improve spatial locality)

25

Change order
i=0, j=0, k=0 i=0, j=1, k=0

i=0, j=2, k=0 i=0, j=0, k=1

C00

B00

A00

C01

B01

A00

C02

B02

A00

C00

B10

A01

26

Cache Blocking (also called tiling)
 Divide a problem into pieces where work can be done on a subset of the

data, and where the subset fits into the CPU caches, e.g. where the value
of block is chosen so the three inner loops can run over data that fits inside
the cache

/* This gives C = A*B + C */

for(size_t i=0;i<n;i+=block) {

for(size_t j=0;j<p;j+=block) {

for(size_t k=0;k<m;k+=block) {

for(size_t ii=i; ii<min(i+block,n);++ii) {

for(size_t jj=j; jj<min(j+block,p);++jj) {

sum = c[ii*p+jj];

for(size_t kk=k; kk<min(k+block,m);++kk) {

sum += a[ii*m+kk] * b[kk*p+jj];

}

c[ii*p+jj] = sum;

}

}

}

}

}

27

Profiling
 Utilization of resources

 What? Why? How?

 Help understand performance i.e. Better bang for buck

 Profiling with a view to understand performance
 Resource specific

• Examine utilization, saturation or errors specific to a resource

 Code specific
• Investigate resources used by the program and its functions

 Dependable results
• Strict methodology that is free from bias

• Reputability of the measurements

28

Things that impact profiling
 What affects the timings?

 Other workloads

 Concurrent access to disk, network, memory etc.

 Frequency scaling (Intel Turbo Boost)

 Non-uniform memory access (NUMA)

 CPU scheduler

 There can still be large time variations

 Always do multiple runs, make sure each run has similar
conditions, e.g. if you program accesses data from files
 Remove staging in files

 Empty filesystem caches
• echo 3 > /proc/sys/vm/drop_caches

29

How to profile
 Profiling at the level of an application

 Add timings into source code

 Measure call counts etc

 Disadvantages

 Creates overhead

 It is not always possible to recompile the code

• Production software is large and complex

• Source code is not readily available

30

How to profile
 Kernel, OS and hardware offer a variety of tools and interfaces

to measure high and low-level events with little performance
impact. This can be done in an intrusive and non-intrusive way.
Some examples for non-intrusive techniques:
 Performance Monitoring Unit

 /proc - is a virtual filesystem that represents the current state of the
Linux kernel

 Linux Control Groups (cgroups) limits and monitors resource usage of
processes

 Some examples of intrusive techniques:
 Dynamic linker allows one to replace symbols at runtime

• Instrumented function, e.g. malloc

31

How to profile
 Performance Monitoring Unit

 Number of registers, counters and features supported are
CPU specific. The following can be measured:

• CPU cycles

• Branch predictions

• Instructions

• Cache accesses

• Memory accesses

• Any many other things…

 Will use this today (via the tool perf)

32

How to profile – non-intrusive tools
 Performance Monitoring Unit – Problems:

 Vast amount of counters – correlation between
them can be difficult to understand

 Encoding can change for different CPU models

 Tools to read counters from PMU:

 perf https://perf.wiki.kernel.org/index.php/Tutorial

 pmu-tools is a wrapper around perf

• https://github.com/andikleen/pmu-tools

33

https://perf.wiki.kernel.org/index.php/Tutorial
https://github.com/andikleen/pmu-tools

Exercise 1 – Naïve matrix multiplication
 Investigate the basic (naïve) matrix multiplication

 The source and ‘makefiles’ are setup to build binaries with gcc and icc

 The example is setup to multiply two square matrices of a size (order) given on the
command line, using double precision floating point

 Time how long the multiplication takes, e.g. with order 2300

 Use perf to measure the number of cycles and number of retired instructions
 Calculate the IPC count for the application

 Amount of work performed per clock tick (Instructions Per Cycle):

perf stat –e cpu-cycles,instructions ./program

34

IPC =
Retired Instructions

CPU clock cycles

Exercise 2 – Change data access order
 Adapt the naïve multiplication and try every ordering of the 3 for

loops
 Measure the execution time of all the combinations

 Consider the order of data access

 For the i, k, j ordering
 Measure IPC again

 Measure the LLC cache misses
• Remeasure the naïve case and compare

 Last level cache: relevant perf event names LLC-load-misses, LLC-prefetch-misses and for totals LLC-
loads, LLC-prefetches

perf stat –e LLC-load-misses,LLC-prefetch-misses ./program

35

Exercise 3 – Rewrite with blocking
 Taking the i,k,j loop order for the previous example and adapt

the multiplication routine to use cache blocking
 Leave the block size as a parameter that you can adjust

 Measure the runtime, IPC and LLC misses with varying blocksize:
• try sizes 64, 128, 256, 512, 1024, 2048, 4096 matrix rows/columns (but you

must use vectors of sufficiently large order)

 Estimate the working size of the data being access for the optimum
blocksize. How does it compare to the CPU cache size?

• You can use the following to get information:

getconf -a | grep CACHE

36

Sources of Parallelism in Modern Architectures

1. Instruction level parallelism (ILP)

2. Pipelining

3. Vector Operations

4. Hardware Threads

5. Multicore

6. Multi Socket

7. Cluster

8. Grid

Architecture handles this with

good coding practice

Can be implicitly generated by

compiler understandable code or

explicitly with intrinsic

Explicitly programmed using

distributed-memory parallel

programming model

Explicitly programmed using

shared-memory parallel

programming model

37

Flynn’s taxonomy: Can be a programmer’s guideline

 Proposed in 1966

 Instruction streams

 single (SI) or multiple (MI)

 Data streams

 single (SD) or multiple (MD)

 Types

 SISD

 SIMD

 MISD

 MIMD

Instruction Pool

D
a

ta
 P

o
o

l

Processing Unit

Processing Unit

Processing Unit

Processing Unit

SIMD

Instruction Pool

D
a

ta
 P

o
o

l

Processing Unit

SISD

Instruction Pool

D
a

ta
 P

o
o

l

Processing

Unit

MISD

Processing

Unit

Instruction Pool

Processing

Unit

Processing

Unit

Processing

Unit

Processing

Unit

MIMD

Processing

Unit

Processing

Unit

Processing

Unit

Processing

Unit

D
a

ta
 P

o
o

l

38

Using SIMD

 Choose between code manageability and portability

and speed:

 Use different levels of abstraction

 Assembly

 Intrinsic

 Wrapper functions or classes in C or C++ (using intrinsics)

 Custom languages like Cilk/Cilk++

 Autovectorization

39

SIMD: SSE, AVX & FMA

 The use of SIMD instructions in vectorized code

can give good performance gains

(S)SSE 1,2,3 SSE 4.1, 4.2 AVX AVX2 + FMA

From 1999

Width 128b

From 2007

Width 128b

From 2011

Width 256b

From 2013

Width 256b

AVX-512

From 2016

Width 512b

• 256b -> 8 floats or 4 doubles (possibility of 4 or 8 speedup)

40

Fused Multiply Add
 These are instructions which can do calculations

of the form:

A <- A*C + B or

A <- B*C + A

 Can bring gain because one instructions replaces
a multiply and add instruction (reduces
throughput cycles and latency)

 Is also a SIMD instruction

41

FMA and floating point
 FMA is specified to round only once

 Therefore FMA is a change which can affect the result of a

calculation compared to using separate multiply and add

operations

 Enable with:

 GCC:

 Will use FMA if it is compiling for an architecture that has it

• May be explicitly set with –mfma or –mno-fma

42

Autovectorization
 Depends on compiler and version

 Advantages
 Can get great speedups (x2 or more) with little change of the source code

 Compiler can generate a report to help

 Source code remains architecture independent

 Disadvantages
 Can be delicate. A small change of the source can stop the compiler

autovectorizing, causing a large change in performance

 Lots of compiler options that affect the autovectorization

 Usually you could have bigger gains using intrinsics or assembly

 Some compiler options which help autovectorization can change the way FP
operations are done: you have to be aware when that may be important

43

Autovectorization
 Two main places where automatic vectorization can

be done
 In loops

• compiler tries to do several iterations of the loop at once
using SIMD

• May unroll a number of the loops so to fill pipeline and
improve ILP

• May peel loops to allow aligned access to data

 Combining similar independent instructions into vector
instructions

• Known as SLP vectorizer

44

Autovectorization difficulties

Possible to vectorize? Concerns may be:

o Is the loop range invariant during the loop

o Is A[] aliased with the other arrays or with sum, is
sum aliased with B[] or C[]

o Is the + operator associative?

o Is the vectorized version expected to be faster?

for(i=0;i<*p;++i) {

A[i] = B[i] * C[i];

sum += A[i];

}
(example from slide by Georg Zitzlsberger, Intel)

45

Using autovectorization
 GCC:

 Switch on using –ftree-vectorize

• Off by default

 Information on autovecotization analysis

• using –ftree-vectorizer-verbose=X (X=0-7, 7 is most information)

• Or examine generated code with gdb

 May be necessary to use –ffast-math

• Often with reductions (e.g. summations)

• This will cause the compiler to relax certain some constrains, for example allow it to assume associative properties

 ICC:

 On by default, modify with –x and -ax

• Would switch off by using –no-vec

 ICC defaults to ignoring parentheses to specify floating point associativity and generally can make more aggressive

optimizations on floating point calculations

• Controlled by -fprotect-parens and –fp-model

 Information on autovectorization analysis

• -qopt-report=2 –qopt-report-phase=vec

• -opt-report-help and –opt-report-phase={hpo,ipo}

• Or examine with gdb…

46

FP caution
 E.g. summing a number of values: One technique to reduce

rounding error over long sums is Kahan summation

double sum = 0.0, C = 0.0, Y, T;

size_t i;

/* Kahan summation of values in A[i] */

for (i=0; i<length; i++) {

Y = a[i] - C;

T = sum + Y;

C = (T-sum) - Y;

sum = T;

}

 If the compiler reasons C=0 the correction is lost. Perhaps
pairwise summation could be used instead.

47

http://a.co/d/h8ckbj5

SoA vs AoS
 It is better to load the contents of a vector register

from a contiguous piece of memory rather than
gather the values

 Can arrange that the data layout fits this access
pattern. e.g. use of Structure of Arrays instead of
Array of Structures. e.g.

struct points {

double x[1000];

double y[1000];

double z[1000];

} locations;

struct point {

double x,y,z;

} location[1000];

48

Software processes & threads
 Process (OS process):

 Encapsulated entity of a program running in its own private address space

 It consists of a private copy of program code and data along with file
descriptors and permissions

 It has a dedicated heap and stack space from which data is accessed and
modified.

 Thread
 Lightweight execution context that runs under a process

 They share address space, program code and operating system resource of
their parent process

 Can be created and destroyed with low overhead in comparison to that of a
process

 Consists of a small amount of thread local storage space

49

http://a.co/d/boF9GxK

Processes & threads
Thread 1

Thread 2

Thread 3

Process

T
im

e

Registers
Program

Counter
Stack

Data

Code

File Descr

Registers

Stack

Data

Code

File Descr

Program

Counter

Registers

Stack

Program

Counter

Registers

Stack

Program

Counter

50

51

Parallel computing
 Performing certain computations simultaneously

using multiple resources

 Amdahl's law & Gustafson's law

 Speedup only comes from the parallelizable

part of the code

 i.e. Serial part of the code will impact or limit

the achievable performance

Amdahl's law

Gustafson's law

Where,

Slatency is the theoretical overall speedup

s is the speedup in the parallel part

p is the percentage of the execution time of serial part

Parallel Programming
 Is a large topic. Many tools and techniques, a few:

 pthreads is a standard API for managing threads
• Fundamental API for threading in Linux

 Cilk Plus
• Language support by compiler extensions: appears as C/C++ with extensions

 TBB (threading building blocks from Intel)
• C++ large use of templates

• commercial binary distribution with support or open source

 C++11 threads

 CUDA and OpenCL
• GPU or CPU/GPU unified programming models

 OpenMP

 http://concurrency.web.cern.ch/GaudiHive
• A framework from the HEP community

52

http://concurrency.web.cern.ch/GaudiHive

OpenMP
 A specification:

 See https://www.openmp.org

 Are compiler directives, routines and variables that can be used to specify
high-level parallelism in C, C++ and Fortran

 GCC
 4.4 – OpenMP 3.0

 4.9 – OpenMP 4.0

 6.1 – OpenMP 4.5

 Clang
 3.7 – OpenMP 3.1

 Intel
 12 – OpenMP 3.1

 16 – OpenMP 4.0

 17 – OpenMP 4.5

53

https://www.openmp.org/

OpenMP
 Code looks similar to a serial version

 #pragma are used to indicate handling of parallel

parts

 Usually uses a fork-join model

Parallel Region Parallel Region SequentialSequential

master

thread

54

OpenMP
 May need to compile with –fopenmp (check your

compiler)

 Most OpenMP features are used through pragmas
#pragma omp construct [clause [clause] …]

 You can change the number of threads via
environment or an API or specify it in the pragma
export OMP_NUM_THREADS=16

55

Parallel regions
 Threads (up to the number configured) are created, if needed, when the

pragma is crossed

 Threads execute the parallel region, the sequential part continues once
all the threads have come to the end of the region

 Data is shared, but stack variables declared in the parallel region are
private

#pragma omp parallel

{

function_called_in_parallel();

}

function_sequential();

56

Parallel for-loops
 Loop iterations become threads

 Data is shared between threads (i.e. iterations), except loop index

 Threads wait at the end of the for loop

 The pragma is specified directly before the loop

#pragma omp parallel

{

#pragma omp for

for (i=0;i < N; i++) {

function(i);

}

}

 The two pragmas above are equivalent to

#pragma omp parallel for

57

Sharing control
 Consider

double x, y;

#pragma omp parallel for

for(i=0;i<N;i++) {

x = a[i]*4;

y = b[i] * b[i];

b[i] = x/y;

}

 This will probably not give the intended
result: x and y are shared between the
threads of the parallel for loop

58

The private clause
 Used to give each thread a private copy of a

variable which was already declared outside

 The variable is uninitialized

double x, y;

#pragma omp parallel for private(x,y)

for(i=0;i<N;i++) {

x = a[i]*4;

y = b[i] * b[i];

b[i] = x/y;

}

59

Variations on sharing control
 As well as private:

 firstprivate: initializes each private copy to the value
from the master thread

 lastprivate: copies the value from the thread, which
executed the last iteration of the loop, to the master
thread

 shared: is the default, but for documentation or if the
default is changed you can uses this clause

 Plus others, e.g. those which concern threadprivate
variables

60

Exercise 4 – Use SIMD in the matrix multiplication

 Starting with the blocked version of the matrix
multiplication see if autovectorization has an effect
 The Makefile already has the matrixmul-simd target.

 Autovectorization may work or might need a small change

• Compare the execution time to a similar multiplication not
using autovectorization

• See if you have SIMD instructions (you may use Intel SDE,
see next slide)

• Check the compiler report if it didn’t work

61

Intel SDE

 Is the software development emulator

 In this case we can use it to count and classify

different types of instructions

export PATH=/home/gss2018/exercises/sde-external-8.16.0-2018-01-30-lin:$PATH

sde -iform 1 -omix test.out -top_blocks 5000 -- ./my_executable

 Look in test.out for lines ending in _1, _2 or _4

representing scalar or packed operations, e.g.

cat test.out | egrep '^*.*_[124]'

62

Exercise 5 - OpenMP
 Use OpenMP to make the matrix multiplication

from the previous exercise use multiple threads
 Set OMP_NUM_THREADS=6, 12, 24, 36 and then

48

 Run a multiplication and use top to look at the
running process. Note that %CPU should be >100%.

 Compare the runtime each time and

 Use perf to measure the instructions and cycles; vary
the number of threads and note how each changes

63

