

Present and Future of Higgs Couplings Measurements At the LHC in CMS

FNAL Topic of the Week Seminar 30th October 2018

David Sperka (Boston University)

Why Measure the Higgs Couplings?

- The discovery of the 125 GeV Higgs boson was the triumph of Run 1
- The Higgs is special:
 - → First fundamental scalar particle (?)
 - First example of non-Gauge interactions (?)
- The Higgs sector is the least tested portion of the SM and also the most problematic:
 - → Hierarchy Problem
 - → Flavor Puzzle

W,Z, top higgs $\Lambda_{\textit{top}} \lesssim 2 \; TeV$ $\Lambda_{gauge} \lesssim 5 \text{ TeV}$ $\Lambda_{Higgs} \lesssim 10 \text{ TeV}$ $y_f^{\rm SM} = \sqrt{2}m_f/v$ $y_t^{\rm SM} \approx 0.99$ $y_b^{\rm SM} \approx 0.02$ g U $y_{\tau}^{\rm SM} \approx 0.01$ T $y_{\mu}^{\rm SM} \approx 0.0006$

Why measure Higgs couplings?

- No direct evidence so far for new physics at the LHC
- Indirect measurements are complementary to searches
- Want to measure couplings to O(1%) level to indirectly test BSM theories
- For observed m(H), (nearly) all couplings are accessible

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

arxiv:1310.8361

Higgs Production Mechanisms

Higgs Decay Modes

$$\begin{split} B(H \rightarrow bb)_{SM} &= 0.58 \ (\text{largest B, down-type yukawa}) \\ B(H \rightarrow \tau \tau)_{SM} &= 0.06 \ (\text{leptonic coupling}) \\ B(H \rightarrow cc)_{SM} &= 0.03 \ (\text{second generation yukawa}) \\ B(H \rightarrow \mu\mu)_{SM} &= 0.0002 \ (\text{second generation yukawa}) \end{split}$$

 $B(H → WW)_{SM} = 0.22$ $B(H → ZZ)_{SM} = 0.026$ (HVV couplings, electroweak symmetry breaking)

CMS Higgs Measurements with 35.9 fb⁻¹ of 13 TeV data

$\mathsf{H}\to\gamma\gamma,\,\mathsf{ZZ}$

arxiv:1804.02716

- Fit to m_{vv} distribution
- Sensitive to all production modes
- Main systematics: ggH th. unc. and photon ID eff. and energy scale

arxiv:1706.09936

- 2D fit of $m_{4\ell}$ and ME distributions
- Precise measurement of ggH
- Main systematics: ggH th. unc. and lepton ID eff.

H→WW arxiv:1806.05246

- Total of 30 signal regions target ggH, VBF, WH, and ZH production modes
- Signal extracted from different sensitive observables depending on the category

dN/dm_{||} [GeV⁻¹]

Data/Expected

• Main systematics: bkg. estimation, th. unc. on signal norm. and migration

VH(bb), ggH(bb)

- 0, 1, 2 lepton categories particularly sensitive to high $p_T(V)$ phase space
- Main systematics: bkg. norm and modeling, MC stats, b-tag eff.

 $\mu = 1.2 \pm 0.4$

- Look for single boosted jet with $p_{\tau} > 450$ GeV, using substructure
- Dominant QCD background estimated from data

$$\mu_{
m H} = 2.3 \pm 1.5 \, (
m stat)^{+1.0}_{-0.4} \, (
m syst)$$

$H \rightarrow \tau \tau$, μμ

- 0 jet, boosted, and VBF cats. to measure ggH and VBF
- Main sys τ_h and p_T(miss) scales, bkg. norm., ggH th. unc. on norm. and migration

$$\hat{\mu} = 1.09^{+0.27}_{-0.26}$$

- 15 event categories based on mass resolution and expected signal and background comp.
- Extract signal from fit to $m_{_{\mu\mu}}$ distribution

$$\mu = 0.7 \pm 1.0$$

ttH(bb), ttH(multilepton)

ttH(bb), 0ł

arxiv:1803.06986

- Large QCD multijet background, mitigated with quark-gluon discrimination
- Signal extracted with multivariate discr.

 $\hat{\mu} = 0.9$ $^{+1.5}_{-1.5}$ ($^{+0.7}_{-0.7}$ $^{+1.3}_{-1.3}$

ttH(bb), 1ℓ / 2ℓ

arxiv:1804.03682

- Signal extracted with multivariate discr.
- Main sys. B-tag eff. MC stats, tt+HF model

$$\hat{\mu}$$
 = 0.72 $^{+0.45}_{-0.45}$ $^{+0.24}_{-0.24}$ $^{+0.38}_{-0.24}$

ttH, 28ss / 38 / 48

arxiv:1803.05485

$H \rightarrow Invisible$

- Direct search for invisible decays of the 125 GeV Higgs included in the combination
- 4 production mode categories, VBF channel has the best sensitivity
- Combined assuming SM production cross sections

The "Grand Combination"

The "Grand Combination"

arxiv:1809.10733

Combined measurements of Higgs boson couplings in proton-proton collisions at $\sqrt{s} = 13$ TeV

CMS Collaboration

(Submitted on 27 Sep 2018)

Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 35.9 fb⁻¹. The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: $H \rightarrow \gamma\gamma$, ZZ, WW, $\tau\tau$, bb, and $\mu\mu$. Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be $\mu = 1.17\pm0.10$, assuming a Higgs boson mass of 125.09 GeV. Additional results are given for parametrizations with varying assumptions on the scaling behavior of the different production and decay modes, including generic ones based on ratios of cross sections and branching fractions or coupling modifiers. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.

 Comments:
 Submitted to EPJC. All figures and tables can be found at this http URL (CMS Public Pages)

 Subjects:
 High Energy Physics - Experiment (hep-ex)

 Report number:
 CMS-HIG-17-031, CERN-EP-2018-263

 Cite as:
 arXiv:1809.10733 [hep-ex]

 (or arXiv:1809.10733v1 [hep-ex] for this version)

Submission history

From: The CMS Collaboration [view email] [v1] Thu, 27 Sep 2018 19:28:22 UTC (1,543 KB)

The "Grand Combination"

- In total up to 265 event categories and over 5500 nuisance parameters
- Correlation scheme studied in detail
- Gluon fusion modeling updated in certain analyses (reweight to NNLOPS, 9 parameter unc. scheme) to ensure consistency amongst channels

Production and decay tags		Expected signal composition	Number of	Mass resolution	
			categories		
$H \rightarrow \gamma \gamma$, Section 3.1					
	Untagged	74-91% ggH	4		
$\gamma\gamma$	VBF	51-80% VBF	3		
	VH hadronic	25% WH, 15% ZH	1		
	WH leptonic	64-83% WH	2	$\approx 1-2\%$	
	ZH leptonic	98% ZH	1		
	$VH p_T^{\text{mass}}$	59% VH	1		
II . 77(*)	ttH	80–89% ttH, ≈8% tH	2		
$H \to ZZ^{(+)} \to 4\ell$, Se	ction 3.2	- OF9/ II	2		
	Untagged	≈95% ggH	3		
	VBF 1, 2-jet	≈11-4/% VBF	0	≈1–2%	
4µ, 2e2µ/2µ2e, 4e	VH hadronic	≈13% WH, ≈10% ZH	3		
	VH leptonic	≈46% WH	3		
	$VH p_T^{\text{mass}}$	≈56% ZH	3		
TT . TITL-(+)	ttH	≈71% ttH	3		
$H \to WW^{(*)} \to \ell \nu \ell \nu,$	Section 3.3		4-		
eµ/µe	ggH 0, 1, 2-jet	\approx 55–92% ggH, up to \approx 15% H \rightarrow $\tau\tau$	17		
1.11	VBF 2-jet	\approx 47% VBF, up to \approx 25% H $\rightarrow \tau\tau$	2		
ee+µµ	ggH 0, 1-jet	≈84–94% ggH	6	$\approx 20\%$	
eµ+jj	VH 2-jet	22% VH, 21% H $\rightarrow \tau \tau$	1		
3ℓ	WH leptonic	\approx 80% WH, up to 19% H $\rightarrow \tau \tau$	2		
4ℓ	ZH leptonic	85–90% ZH, up to 14% H $\rightarrow \tau\tau$	2		
$H \rightarrow \tau \tau$, Section 3.4					
	0-jet	$pprox$ 70–98% ggH, 29% H $ ightarrow$ WW in e μ	4		
$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	VBF	\approx 35–60% VBF, 42% H \rightarrow WW in e μ	4	$\approx 10-20\%$	
	Boosted	$pprox$ 48–83% ggH, 43% H $ ightarrow$ WW in e μ	4		
VH production with	$H \rightarrow bb$, Section 3.5				
$Z(\nu\nu)bb$	ZH leptonic	\approx 100% VH, 85% ZH	1		
W(ℓv)bb	WH leptonic	≈100% VH, ≈97% WH	2	$\approx 10\%$	
Z(ll)bb	Low- $p_{\rm T}(V)$ ZH leptonic	$\approx 100\%$ ZH, of which $\approx 20\%$ ggZH	2		
-(00)	High- $p_T(V)$ ZH leptonic	≈100% ZH, of which ≈36% ggZH	2		
Boosted H Production	n with $H \rightarrow bb$, Section 3.6				
$H \rightarrow bb$	$p_{\rm T}({\rm H})$ bins	≈72–79% ggH	6	$\approx 10\%$	
ttH production with l	$H \rightarrow leptons, Section 3.7.1$				
	2ℓss	WW/ $\tau\tau \approx 4.5, \approx 5\%$ tH	10		
	3ℓ	WW : $\tau\tau$: ZZ \approx 15 : 4 : 1, \approx 5% tH	4		
$H \rightarrow WW, \tau\tau, ZZ$	4ℓ	WW : $\tau\tau$: ZZ \approx 6 : 1 : 1, \approx 3% tH	1		
	$1\ell+2\tau_h$	96% ttH with H $\rightarrow \tau \tau$, \approx 6% tH	1		
	$2\ell ss+1\tau_h$	$\tau\tau: WW \approx 5: 4, \approx 5\% tH$	2		
	$3\ell+1\tau_h$	$\tau\tau$: WW : ZZ \approx 11 : 7 : 1, \approx 3% tH	1		
ttH production with l	$H \rightarrow bb$, Section 3.7.2				
$H \to b b$	$t\bar{t} \rightarrow jets$	\approx 83–97% ttH with H \rightarrow bb	6		
	$t\bar{t} \rightarrow 1\ell$ +jets	${\approx}6595\%$ ttH with H ${\rightarrow}$ bb, up to 20% H ${\rightarrow}$ WW	18		
	$t\bar{t} \rightarrow 2\ell$ +jets	${\approx}8496\%$ ttH with H ${\rightarrow}$ bb	3		
Search for $H \rightarrow \mu \mu$,	Section 3.8				
μμ	S/B bins	56-96% ggH, 1-42% VBF	15	\approx 1–2%	
Search for invisible H decays, Section 3.9					
	VBF	52% VBF, 48% ggH	1		
U invisible	$ggH + \ge 1$ jet	80% ggH, 9% VBF	1		
$\Pi \rightarrow INVISIDIE$	VH hadronic	54% VH, 39% ggH	1		
	ZH leptonic	≈100% ZH, of which 21% ggZH	1		

David Sperka, FNAL TOTW Seminar

m(H) measurement

Per Production x Decay Mode

- Most generic parametrization giving different signal strength to each prod. and decay combination
- Certain signal strengths restricted due to low background expectation

• Suitable for reinterpretation

Per Production x Decay Mode

35.9 fb⁻¹ (13 TeV)

David Sperka, FNAL TOTW Seminar

Per Production x Decay Mode

35.9 fb⁻¹ (13 TeV)

Assume SM Branching Ratios...

Production process	Best fit value		Uncertainty	
			stat.	syst.
ggH	1.22	$^{+0.14}_{-0.12} \\ (^{+0.11}_{-0.11})$	$^{+0.08}_{-0.08} \\ (^{+0.07}_{-0.07})$	$^{+0.12}_{-0.10} \\ (^{+0.09}_{-0.08})$
VBF	0.73	$^{+0.30}_{-0.27} \\ (^{+0.29}_{-0.27})$	$^{+0.24}_{-0.23} \\ (^{+0.24}_{-0.23})$	$^{+0.17}_{-0.15} \\ ^{+0.16}_{(-0.15)}$
WH	2.18	$^{+0.58}_{-0.55} \\ (^{+0.53}_{-0.51})$	$^{+0.46}_{-0.45} \\ (^{+0.43}_{-0.42})$	$^{+0.34}_{-0.32} \\ ^{+0.30}_{(-0.29)}$
ZH	0.87	$^{+0.44}_{-0.42} \\ (^{+0.43}_{-0.41})$	$^{+0.39}_{-0.38}$ $(^{+0.38}_{-0.37})$	$^{+0.20}_{-0.18} \\ ^{+0.19} \\ ^{-0.17})$
ttH	1.18	$^{+0.30}_{-0.27} \\ (^{+0.28}_{-0.25})$	$^{+0.16}_{-0.16} \\ (^{+0.16}_{-0.15})$	$^{+0.26}_{-0.21} \\ (^{+0.23}_{-0.20})$

An aside: Observation of ttH

arxiv:1804.02610

Higgs Couplings Measurements at the LHC

David Sperka, FNAL TOTW Seminar

Assume SM Relative Cross Sections...

Decay mode	Best fit value		Uncertainty	
			stat.	syst.
$H \to bb$	1.12	$^{+0.29}_{-0.29}$ $\binom{+0.28}{-0.27}$	$^{+0.19}_{-0.18} \\ (^{+0.18}_{-0.18})$	$^{+0.22}_{-0.22}$ $\binom{+0.21}{-0.20}$
$H \to \tau \tau$	1.02	$^{+0.26}_{-0.24}$ $\binom{+0.24}{-0.22}$	$^{+0.15}_{-0.15} \\ (^{+0.15}_{-0.14})$	$^{+0.21}_{-0.19} \\ \left(^{+0.19}_{-0.17} \right)$
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	1.28	$^{+0.17}_{-0.16} \\ (^{+0.14}_{-0.13})$	$^{+0.09}_{-0.09} \\ (^{+0.09}_{-0.09})$	$^{+0.14}_{-0.13} \\ ^{+0.11}_{-0.10})$
$\mathrm{H} \to \mathrm{Z}\mathrm{Z}$	1.06	$^{+0.19}_{-0.17} \\ (^{+0.18}_{-0.16})$	$^{+0.16}_{-0.15} \\ (^{+0.15}_{-0.14})$	$^{+0.11}_{-0.08} \\ (^{+0.10}_{-0.08})$
${ m H} ightarrow \gamma \gamma$	1.20	$^{+0.18}_{-0.14} \\ (^{+0.14}_{-0.12})$	$^{+0.13}_{-0.11} \\ (^{+0.10}_{-0.10})$	$^{+0.12}_{-0.09} \\ (^{+0.09}_{-0.07})$
$H ightarrow \mu \mu$	0.68	$^{+1.25}_{-1.24} \\ (^{+1.20}_{-1.17})$	$^{+1.24}_{-1.24} \\ ^{+1.18}_{-1.17})$	$^{+0.13}_{-0.11} \\ (^{+0.19}_{-0.03})$

An aside: Observation of $H\rightarrow bb$

Assume SM Branching Ratios and Relative Production Cross Sections

• Most constrained interpretation: single signal strength modifier which scales all prod. and decay modes assuming SM relative composition

$$\mu = 1.17^{+0.10}_{-0.10} = 1.17^{+0.06}_{-0.06} \text{ (stat.) } ^{+0.06}_{-0.05} \text{ (sig. th.) } ^{+0.06}_{-0.06} \text{ (other sys.)}$$

- Systematically dominated, similar weight of theoretical and experimental uncertainties
- $\sim 2\sigma$ agreement with respect to SM prediction

Another Generic Parametrization

Higgs Couplings Measurements at the LHC

David Sperka, FNAL TOTW Seminar

"Simplified Template Cross Sections"

- Can also separate th. uncs. in SM predictions (grey bands) from exp. and th. uncs. in the measurements
- Results quoted for a common simplified fiducial volume
- Results quoted for the usual production modes
 - → VH split into V(ℓℓ) and V(qq)
- More on this later

"Simplified Template Cross Sections"

- Can also separate th. uncs. in SM predictions (grey bands) from exp. and th. uncs. in the measurements
- Results quoted for a common simplified fiducial volume
- Results quoted for the usual production modes
 - → VH split into V(ℓℓ) and V(qq)
- More on this later

Higgs Couplings Measurements at the LHC

David Sperka, FNAL TOTW Seminar

Correlating Production and Decay

Coupling Modifier Model

- We interpret the results using the LO coupling modifier or "kappa" framework
- Introduce parameters which coherently scale cross sections and partial widths relative to SM

$$\kappa_{j}^{2} = \sigma_{j} / \sigma_{j}^{SM} \qquad \kappa_{j}^{2} = \Gamma^{j} / \Gamma_{SM}^{j} \qquad \sigma_{i} \mathcal{B}^{f} = \frac{\sigma_{i}(\vec{\kappa})\Gamma^{f}(\vec{\kappa})}{\Gamma_{H}(\vec{\kappa})}$$
$$\frac{\Gamma_{H}}{\Gamma_{H}^{SM}} = \frac{\kappa_{H}^{2}}{1 - (\mathcal{B}_{undet} + \mathcal{B}_{inv})}, \quad \kappa_{H}^{2} = \frac{0.58\kappa_{b}^{2} + 0.22\kappa_{W}^{2} + 0.08\kappa_{g}^{2} + 0.026\kappa_{Z}^{2} + 0.029\kappa_{c}^{2} + 0.0025\kappa_{Z}^{2} + 0.0015\kappa_{Z\gamma}^{2} + 0.00025\kappa_{s}^{2} + 0.00025\kappa_{s}^{2} + 0.00022\kappa_{\mu}^{2}}$$

- Two parameters account for BSM contributions to total width:
 - $\Rightarrow B_{inv}$: Decays to invisible particles (direct search included in comb.)
 - $\rightarrow B_{undet}$: Other BSM decays, direct searches not included in comb.

Couplings: Assumptions (1)

- There is an ambiguity in the model:
 - → If we scale all SM couplings by a common factor the production cross sections increase
 - Branching ratios stay the same if $B_{BSM} = 0$, rate increases
 - → But we can keep the rates the same if we increase B_{BSM} to compensate for the increase in cross section

$$\frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} = \frac{\kappa_{\rm H}^2}{1 - (\mathcal{B}_{\rm undet} + \mathcal{B}_{\rm inv})}, \quad \kappa_{\rm H}^2 = \begin{array}{c} 0.58\kappa_{\rm b}^2 + 0.22\kappa_{\rm W}^2 + 0.08\kappa_{\rm g}^2 + 0.029\kappa_{\rm c}^2 + 0.029\kappa_{\rm c}^2 + 0.0029\kappa_{\rm c}^2 + 0.0029\kappa_{\rm c}^2 + 0.00028\kappa_{\rm g}^2 + 0.00025\kappa_{\rm g}^2 + 0.00025\kappa_{\rm g}^2 + 0.00022\kappa_{\rm g}^2 + 0.0002\kappa_{\rm g}^2 +$$

An Aside: The Total Higgs Width (1)

- The Higgs width at 125 GeV in the SM is tiny: ~4 MeV
- The Higgs wants to decay to massive particles but it is too light!
- Partial widths in SM are all suppressed by phase space factors or small yukawa couplings
- BSM with small couplings can still have quite large BR

An Aside: The Total Higgs Width (2)

An Aside: The Total Higgs Width (3)

 Indirect measurement from ratio of off-shell and on-shell signal strength

 $\sigma_{vv \to H \to 4\ell}^{\text{on-shell}} \propto \mu_{vvH} \text{ and } \sigma_{vv \to H \to 4\ell}^{\text{off-shell}} \propto \mu_{vvH} \cdot \Gamma_{H}$

• Assumes no new physics in ggH loop or at high m(ZZ)

Higgs Couplings Measurements at the LHC

CMS-PAS-HIG-18-002

Nevertheless, we proceed....

- We make three different assumptions to resolve the ambiguity in the total Higgs width:
 - Don't measure absolute couplings, only ratios of couplings
 - →B_{BSM} = 0 (Big assumption!)
 - Restrict K_v < 1 (Motivated by unitarity, true in many BSM models, but not all)</p>

Couplings: Assumptions (2)

Coupling Modifier Model

			Effective	
	Loops	Interference	scaling factor	Resolved scaling factor
Production				
$\sigma(m ggH)$	\checkmark	b-t	$\kappa_{\rm g}^2$	$1.04\kappa_{\rm t}^2 + 0.002\kappa_{\rm b}^2 - 0.038\kappa_{\rm t}\kappa_{\rm b}$
$\sigma(\mathrm{VBF})$		—	_	$0.73\kappa_{W}^{2} + 0.27\kappa_{Z}^{2}$
$\sigma({ m WH})$		—		$\kappa_{ m W}^2$
$\sigma(qq/qg \rightarrow ZH)$		—		κ_Z^2
$\sigma(m gg ightarrow m ZH)$	\checkmark	Z-t		$2.46\kappa_Z^2 + 0.47\kappa_t^2 - 1.94\kappa_Z\kappa_t$
$\sigma(ttH)$		—		$\kappa_{\rm t}^2$
$\sigma({ m gb} ightarrow { m WtH})$		W-t		$2.91\kappa_{\rm t}^2 + 2.31\kappa_{\rm W}^2 - 4.22\kappa_{\rm t}\kappa_{\rm W}$
$\sigma({ m qb} ightarrow { m tHq})$		W-t		$2.63\kappa_{\rm t}^2 + 3.58\kappa_{\rm W}^2 - 5.21\kappa_{\rm t}\kappa_{\rm W}$
$\sigma({ m bbH})$		—		$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}		_		κ_Z^2
Γ^{WW}				$\kappa_{\rm W}^{\overline{2}}$
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	κ_{γ}^2	$1.59\kappa_{\rm W}^2 + 0.07\kappa_{\rm t}^2 - 0.67\kappa_{\rm W}\kappa_{\rm t}$
$\Gamma^{ au au}$,	κ_{τ}^2
Γ^{bb}				$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$				κ_{μ}^2
Total width for $\mathcal{B}_{BSM} = 0$				
			2	$0.58\kappa_{\rm b}^2 + 0.22\kappa_{\rm W}^2 + 0.08\kappa_{\rm g}^2 +$
$\Gamma_{ m H}$	\checkmark	—	$\kappa_{ m H}^2$	$+0.06\kappa_{\tau}^{2}+0.026\kappa_{Z}^{2}+0.029\kappa_{c}^{2}+$
				$+ 0.0023\kappa_{\gamma}^2 + 0.0015\kappa_{Z\gamma}^2 +$
				$+ 0.00025\kappa_{\rm s}^2 + 0.00022\kappa_{\mu}^2$

Higgs Couplings Measurements at the LHC

David Sperka, FNAL TOTW Seminar
Coupling Modifier Ratio Model

Couplings: Effective Loops

- No assumptions about loops (k_{α} and k_{ν} free parameters)
- Assumption about total width: No BSM decays

Higgs Couplings Measurements at the LHC

Couplings: Effective Loops

- No assumptions about loops (k_{α} and k_{ν} free parameters)
- Assumption about total width: $k_v < 1$

Higgs Couplings Measurements at the LHC

Couplings: Relative Sign of k_t and k_w

- Mild preference (~2 σ) for $k_k k_w < 0$, which enhances tH prod.
- Driven by excess in ttH categories of $H \rightarrow \gamma \gamma$ analyis
- Dedicated tH categories not included, will be resolved w/ full Run 2 dataset (include these categories in the combination)

Constraint on Total Width

- Assuming k_v < 1, but allowing for BSM decays, set constraint on total Higgs width
- Performed by making total width a parameter of the model (instead of a function of other k's), and making k_b a function of other k's and total width

Looking Only at Loop Processes

- Test for new physics in loop processes $gg \rightarrow H$ and $H \rightarrow \gamma\gamma$
- Allow for the presence of BSM decays
- All other k's fixed to SM value

Couplings: Resolved Loops

- Assume no new physics in loop processes
- Assume no BSM decays

CMS

35.9 fb⁻¹ (13 TeV)

Observed

— 1σ interval

Couplings: Vector Bosons vs. Fermions

- Assume two separate modifiers: for vector bosons and fermions
- Assume no BSM decays and knowledge of loop processes
- Input from all decay modes needed to obtain strong constraints

Testing Symmetry of Fermion Couplings

- Build different models to test symmetry of up type vs. down type fermion couplings, and quarks vs. leptons
- Can be used to constrain BSM models, such as 2HDM and MSSM...

	2HDM					
	Type I	Type II	Type III	Type IV		
$\kappa_{\rm V}$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$rac{s_{ m d}+s_{ m u} aneta}{\sqrt{1+ an^2eta}}$	
$\kappa_{\rm u}$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$S_{\rm u} \frac{\sqrt{1+\tan^2\beta}}{\tan\beta}$	
κ _d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$s_{\rm d}\sqrt{1+\tan^2\beta}$	
κ_{l}	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	$s_{\rm d}\sqrt{1+\tan^2\beta}$	

$$s_{\rm u} = \frac{1}{\sqrt{1 + \frac{(m_{\rm A}^2 + m_{\rm Z}^2)^2 \tan^2 \beta}{(m_{\rm Z}^2 + m_{\rm A}^2 \tan^2 \beta - m_{\rm H}^2(1 + \tan^2 \beta))^2}}} \quad s_{\rm d} = s_{\rm u} \frac{m_{\rm A}^2 + m_{\rm Z}^2 \tan \beta}{m_{\rm Z}^2 + m_{\rm A}^2 \tan^2 \beta - m_{\rm H}^2(1 + \tan^2 \beta)}$$

As promised: Constraints on BSM models

Higgs Couplings Measurements at the LHC

As promised: Constraints on BSM models

Higgs Couplings Measurements at the LHC

As promised: Constraints on BSM models

Where do we go from here?

Going Differential

- BSM effects which are small (or zero) inclusively can be better constrained by looking at kinematic distributions
- Such measurements already performed in $H \to ZZ$ and $H \to \gamma\gamma$

Higgs Couplings Measurements at the LHC

Combination of Differential Spectra

- Assuming SM for acceptance corrections, can combine spectra measured from different decay channels
- Also includes boosted $H \rightarrow bb$ at high $p_{\tau}(H)$

Higgs Couplings Measurements at the LHC

- Higgs p_{τ} spectrum one of the most important differential observables
 - Difficult theoretically due to matching of fixed order and resummed calculations, inclusion of finite top and bottom quark masses
 - → Also sensitive to BSM effects, even for the same total cross section

Shape information only, no assumptions on coupling dependence of BR's and total Higgs Width

$$O_6 = -\lambda \left(H^{\dagger} H \right)^3 \implies \mathcal{L} \supset -\lambda c_3 v h^3 = -\lambda \left(1 + \bar{c}_6 - \frac{3\bar{c}_H}{2} \right) v h^3$$

arxiv:1610.05771

Figure 6. Comparison of the $p_{T,h}$ (left) and m_{Wh} (right) spectrum in Wh production. The upper panels show the SM predictions (black) as well as the cases $\bar{c}_6 = -10$ (blue) and $\bar{c}_6 = 10$ (red). The ratios between the case $\bar{c}_6 = -10$ and the SM (blue) and the case $\bar{c}_6 = 10$ and the SM (red) are displayed in the lower panels. All results correspond to pp collisions at $\sqrt{s} = 13$ TeV.

"Simplified Template Cross Sections"

"Simplified Template Cross Sections"

Higgs Couplings Measurements at the LHC

"Simplified Template Cross Sections"

ATLAS-CONF-2017-047

Simplified template cross section measurements

Summary & Outlook

- The Higgs is a special particle and the Higgs sector is the least tested part of the Standard Model
- Extracting Higgs couplings requires a combination of all possible production and decay channels (as well as many assumptions)
- We are moving past the "observation" phase and are now testing for subtle deviations predicted by BSM models, and already placing constraints that are complementary to direct searches
- We need to move towards more fine grained study of the kinematics of each production process (and possibly decay processes as well!)

Backup

Higgs Couplings Measurements at the LHC

Unfortunately, It's all Compatible...

Parameterization	p-value (q _{SM})	DOF	Parameters of interest
Global signal strength	6.28% (3.46)	1	μ
Production processes	9.87% (9.27)	5	$\mu_{\rm ggH}, \mu_{\rm VBF}, \mu_{\rm WH}, \mu_{\rm ZH}, \mu_{\rm ttH}$
Decay modes	53.8% (5.05)	6	$\mu^{\gamma\gamma}, \mu^{\rm ZZ}, \mu^{\rm WW}, \mu^{\tau\tau}, \mu^{\rm bb}, \mu^{\mu\mu}$
$\sigma_i \mathcal{B}^f$ products	61.2% (21.5)	24	$ \begin{array}{l} \sigma_{\rm ggH} \mathcal{B}^{\rm bb}, \ \sigma_{\rm ggH} \mathcal{B}^{\tau\tau}, \ \sigma_{\rm ggH} \mathcal{B}^{\mu\mu}, \ \sigma_{\rm ggH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm ggH} \mathcal{B}^{ZZ}, \\ \sigma_{\rm ggH} \mathcal{B}^{\gamma\gamma}, \ \sigma_{\rm VBF} \mathcal{B}^{\tau\tau}, \ \sigma_{\rm VBF} \mathcal{B}^{\mu\mu}, \ \sigma_{\rm VBF} \mathcal{B}^{\rm WW}, \ \sigma_{\rm VBF} \mathcal{B}^{ZZ}, \\ \sigma_{\rm VBF} \mathcal{B}^{\gamma\gamma}, \ \sigma_{\rm WH} \mathcal{B}^{\rm bb}, \ \sigma_{\rm WH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm WH} \mathcal{B}^{ZZ}, \ \sigma_{\rm WH} \mathcal{B}^{\gamma\gamma}, \\ \sigma_{\rm ZH} \mathcal{B}^{\rm bb}, \ \sigma_{\rm ZH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm ZH} \mathcal{B}^{ZZ}, \ \sigma_{\rm ZH} \mathcal{B}^{\gamma\gamma}, \ \sigma_{\rm ttH} \mathcal{B}^{\tau\tau}, \\ \sigma_{\rm ttH} \mathcal{B}^{\rm WW}, \ \sigma_{\rm ttH} \mathcal{B}^{ZZ}, \ \sigma_{\rm ttH} \mathcal{B}^{\gamma\gamma}, \ \sigma_{\rm ttH} \mathcal{B}^{\rm bb} \end{array} $
Ratios of σ and \mathcal{B} relative to $gg \rightarrow H \rightarrow ZZ$	32.3% (11.5)	10	$ \begin{array}{l} \mu_{\rm ggH}^{\rm ZZ}, \mu_{\rm VBF}/\mu_{\rm ggH}, \mu_{\rm WH}/\mu_{\rm ggH}, \mu_{\rm ZH}/\mu_{\rm ggH}, \mu_{\rm ttH}/\mu_{\rm ggH}, \\ \mu^{\rm WW}/\mu^{\rm ZZ}, \mu^{\gamma\gamma}/\mu^{\rm ZZ}, \mu^{\tau\tau}/\mu^{\rm ZZ}, \mu^{\rm bb}/\mu^{\rm ZZ}, \mu^{\rm bb}/\mu^{\mu\mu} \end{array} $
Simplified template cross sections with branching fractions relative to \mathcal{B}^{ZZ}	21.2% (14.4)	11	$ \begin{array}{l} \sigma_{\rm ggH} \mathcal{B}^{\rm ZZ}, \ \sigma_{\rm VBF} \mathcal{B}^{\rm ZZ}, \ \sigma_{\rm H+V(qq)} \mathcal{B}^{\rm ZZ}, \ \sigma_{\rm H+W(\ell\nu)} \mathcal{B}^{\rm ZZ}, \\ \sigma_{\rm H+Z(\ell\ell/\nu\nu)} \mathcal{B}^{\rm ZZ}, \ \sigma_{\rm ttH} \mathcal{B}^{\rm ZZ}, \ \mathcal{B}^{\rm bb}/\mathcal{B}^{\rm ZZ}, \ \mathcal{B}^{\tau\tau}/\mathcal{B}^{\rm ZZ}, \\ \mathcal{B}^{\mu\mu}/\mathcal{B}^{\rm ZZ}, \mathcal{B}^{\rm WW}/\mathcal{B}^{\rm ZZ}, \mathcal{B}^{\gamma\gamma}/\mathcal{B}^{\rm ZZ} \end{array} $
Couplings, SM loops	45.6% (5.71)	6	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu$
Couplings vs. mass	16.8% (3.57)	2	M, ϵ
Couplings, BSM loops	18.5% (11.3)	8	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu, \kappa_\gamma, \kappa_g$
Couplings, BSM loops and decays including H \rightarrow invisible channels	32.4% (11.5)	10	$\kappa_Z, \kappa_W, \kappa_t, \kappa_\tau, \kappa_b, \kappa_\mu, \kappa_\gamma, \kappa_g, \mathcal{B}_{inv}, \mathcal{B}_{undet}$
Ratios of coupling modi- fiers	18.1% (11.4)	8	$\kappa_{\rm gZ}, \lambda_{\rm WZ}, \lambda_{\gamma Z}, \lambda_{\rm tg}, \lambda_{\rm bZ}, \lambda_{\tau Z}, \lambda_{\mu Z}, \lambda_{Zg}$
Fermion and vector cou- plings	16.9% (3.55)	2	$\kappa_{\rm F}, \kappa_{\rm V}$
Fermion and vector cou- plings, per decay mode	76.7% (8.2)	12	$ \begin{array}{l} \kappa_{\rm F}^{\rm bb}, \kappa_{\rm F}^{\tau\tau}, \kappa_{\rm F}^{\mu\mu}, \kappa_{\rm F}^{\rm WW}, \kappa_{\rm F}^{ZZ}, \kappa_{\rm F}^{\gamma\gamma}, \kappa_{\rm V}^{\rm bb}, \kappa_{\rm V}^{\tau\tau}, \kappa_{\rm V}^{\mu\mu}, \kappa_{\rm V}^{\rm WW}, \kappa_{\rm V}^{ZZ}, \\ \kappa_{\rm V}^{\gamma\gamma} \end{array} $
Up vs. down-type cou- plings	25.5% (4.06)	3	$\lambda_{\mathrm{Vu}}, \lambda_{\mathrm{du}}, \kappa_{\mathrm{uu}}$
Lepton vs. quark cou- plings	27.2% (3.91)	3	$\lambda_{lq'} \lambda_{Vq}, \kappa_{qq}$

Higgs Couplings Measurements at the LHC

Constraints on BSM Decays

arxiv:1401.0152

Higgs interaction	2HDM coupling	decoupling limit	
hVV	$\sin(\beta - \alpha)$	$1 - \frac{1}{2}\cos^2(\beta - \alpha)$	
hhh	see eq. (61) of Ref. [26]	$1 + 2(Z_6/Z_1)\cos(\beta - \alpha)$	
hhhh	see eq. (62) of Ref. [26]	$1 + 3(Z_6/Z_1)\cos(\beta - \alpha)$	
$h\overline{D}D$ [Type-I], $h\overline{U}U$ [Types-I and II]	$\frac{\cos \alpha}{\sin \beta} = \sin(\beta - \alpha) + \cos(\beta - \alpha) \cot \beta$	$1 + \cos(eta - lpha) \cot eta$	
$h\overline{D}D$ [Type-II]	$-\frac{\sin\alpha}{\cos\beta} = \sin(\beta - \alpha) - \cos(\beta - \alpha) \tan\beta$	$1 - \cos(\beta - \alpha) \tan \beta$	

Run 1 Results: ATLAS+CMS Combination

ATLAS+CMS Combination

Production process	ATLAS+CMS	ATLAS	CMS	Decay channel	ATLAS+CMS	ATLAS	CMS
	1 03 +0.16	1 26 +0.23	0.84 +0.18	$\mu^{\gamma\gamma}$	$1.14 \substack{+0.19 \\ -0.18}$	$1.14 \substack{+0.27 \\ -0.25}$	$1.11^{+0.25}_{-0.23}$
₽ggF	$(+0.16)^{-0.14}$	(+0.21)	(+0.20)		$\binom{+0.18}{-0.17}$	$\binom{+0.26}{-0.24}$	$\binom{+0.23}{-0.21}$
	(-0.14)	(-0.18)	(-0.17)	μ^{ZZ}	$1.29^{+0.26}_{-0.22}$	$1.52^{+0.40}_{-0.24}$	$1.04^{+0.32}_{-0.26}$
$\mu_{ m VBF}$	$1.18 \substack{+0.25 \\ -0.23}$	1.21 + 0.33 - 0.30	$1.14^{+0.37}_{-0.34}$,	$\begin{pmatrix} -0.23 \\ +0.23 \\ -0.20 \end{pmatrix}$	$\begin{pmatrix} +0.32\\ -0.27 \end{pmatrix}$	$\begin{pmatrix} -0.20\\ +0.30\\ -0.25 \end{pmatrix}$
	$\begin{pmatrix} +0.24\\ -0.23 \end{pmatrix}$	$\begin{pmatrix} +0.32\\ -0.29 \end{pmatrix}$	$\begin{pmatrix} +0.36\\ -0.34 \end{pmatrix}$	μ^{WW}	$1.09 \substack{+0.18 \\ -0.16}$	$1.22 \substack{+0.23 \\ -0.21}$	$0.90 {}^{+0.23}_{-0.21}$
μ_{WH}	$0.89^{+0.40}_{-0.38}$	$1.25 \substack{+0.56 \\ -0.52}$	$0.46^{+0.57}_{-0.53}$		$\binom{+0.16}{-0.15}$	$\binom{+0.21}{-0.20}$	$\begin{pmatrix} +0.23\\ -0.20 \end{pmatrix}$
	$\binom{+0.41}{-0.39}$	$\binom{+0.56}{-0.53}$	$\binom{+0.60}{-0.57}$	$\mu^{ au au}$	$1.11 \substack{+0.24 \\ -0.22}$	$1.41 \substack{+0.40 \\ -0.36}$	$0.88 \substack{+0.30 \\ -0.28}$
μ_{ZH}	$0.79^{+0.38}_{-0.36}$	0.30 + 0.51 = 0.45	$1.35^{+0.58}_{-0.54}$		$\binom{+0.24}{-0.22}$	$\binom{+0.37}{-0.33}$	$\begin{pmatrix} +0.31\\ -0.29 \end{pmatrix}$
	$\begin{pmatrix} +0.39\\ 0.36 \end{pmatrix}$	$\begin{pmatrix} +0.55\\ 0.51 \end{pmatrix}$	$\begin{pmatrix} +0.55\\ 0.51 \end{pmatrix}$	μ^{bb}	$0.70 \substack{+0.29 \\ -0.27}$	$0.62 {}^{+0.37}_{-0.37}$	$0.81 \substack{+0.45 \\ -0.43}$
11	2 3 + 0.7	(-0.51)	$20^{+1.0}$		$\begin{pmatrix} +0.29\\ -0.28 \end{pmatrix}$	$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$
μttH	2.3 - 0.6 (+0.5)	$\begin{array}{c} 1.7 \\ -0.7 \\ (+0.7) \end{array}$	$\begin{pmatrix} 2.9 \\ -0.9 \\ (+0.9) \end{pmatrix}$	$\mu^{\mu\mu}$	$0.1^{+2.5}_{-2.5}$	$-0.6^{+3.6}_{-3.6}$	$0.9^{+3.6}_{-3.5}$
	(-0.5)	(-0.7)	(-0.8)		$\binom{+2.4}{-2.3}$	$\binom{+3.6}{-3.6}$	$\binom{+3.3}{-3.2}$

Run 1 Results: ATLAS+CMS Combination

Run 1 Results: ATLAS+CMS Combination

ATLAS+CMS Combination

Parameter	ATLAS+CMS	ATLAS+CMS	ATLAS	CMS				
	Measured	Expected uncertainty	Measured	Measured				
	Parameterisation assuming $B_{BSM} = 0$							
КZ	-0.98		1.01	-0.99				
	[−1.08, −0.88]∪	[−1.01, −0.87]∪	[−1.09, −0.85]∪	[−1.14, −0.84]∪				
	[0.94, 1.13]	[0.89, 1.11]	[0.87, 1.15]	[0.94, 1.19]				
K _W	0.87		0.92	0.84				
	[0.78, 1.00]	[−1.08, −0.90]∪	[−0.94, −0.85]∪	[−0.99, −0.74]∪				
		[0.88, 1.11]	[0.78, 1.05]	[0.71, 1.01]				
K _t	$1.40\substack{+0.24 \\ -0.21}$	+0.26 -0.39	$1.32^{+0.31}_{-0.33}$	$1.51_{-0.32}^{+0.33}$				
$ \kappa_{\tau} $	$0.84^{+0.15}_{-0.11}$	+0.16 -0.15	$0.97^{+0.19}_{-0.19}$	$0.77^{+0.18}_{-0.15}$				
$ \kappa_b $	$0.49^{+0.27}_{-0.15}$	+0.25 -0.28	$0.61^{+0.26}_{-0.31}$	$0.47^{+0.34}_{-0.19}$				
$ \kappa_g $	$0.78^{+0.13}_{-0.10}$	+0.17 -0.14	$0.94^{+0.18}_{-0.17}$	$0.67^{+0.14}_{-0.12}$				
$ \kappa_{\gamma} $	$0.87^{+0.14}_{-0.09}$	+0.12 -0.13	$0.88^{+0.15}_{-0.15}$	$0.89^{+0.19}_{-0.13}$				

ATLAS+CMS Combination

Parameter	ATLAS+CMS	ATLAS+CMS	ATLAS	CMS		
	Measured	Expected uncertainty	Measured	Measured		
Parameterisation assuming $ \kappa_V \le 1$ and $B_{BSM} \ge 0$						
κ _Z	1.00		1.00	-1.00		
	[0.92, 1.00]	[−1.00, −0.89]∪	[−0.97, −0.94]∪	[−1.00, −0.84]∪		
		[0.89, 1.00]	[0.86, 1.00]	[0.90, 1.00]		
ĸw	0.90		0.92	-0.84		
	[0.81, 0.99]	[−1.00, −0.90]∪	[−0.88, −0.84]∪	[−1.00, −0.71]∪		
		[0.89, 1.00]	[0.79, 1.00]	[0.76, 0.98]		
κ _t	$1.43^{+0.23}_{-0.22}$	+0.27 -0.32	$1.31_{-0.33}^{+0.35}$	$1.45^{+0.42}_{-0.32}$		
$ \kappa_{\tau} $	$0.87^{+0.12}_{-0.11}$	+0.14 -0.15	$0.97^{+0.21}_{-0.17}$	$0.79^{+0.20}_{-0.16}$		
$ \kappa_b $	$0.57^{+0.16}_{-0.16}$	+0.19 -0.23	$0.61^{+0.24}_{-0.26}$	$0.49^{+0.26}_{-0.19}$		
$ \kappa_g $	$0.81\substack{+0.13 \\ -0.10}$	+0.17 -0.14	$0.94^{+0.23}_{-0.16}$	$0.69^{+0.21}_{-0.13}$		
$ \kappa_{\gamma} $	$0.90^{+0.10}_{-0.09}$	+0.10 -0.12	$0.87^{+0.15}_{-0.14}$	$0.89^{+0.17}_{-0.13}$		
Run 1 Results: ATLAS+CMS Combination

Run 1 Results: ATLAS+CMS Combination

Parameter	ATLAS+CMS	ATLAS+CMS	ATLAS	CMS
	Measured	Expected uncertainty	Measured	Measured
κ _Z	1.00		0.98	1.03
	[−1.05, −0.86]∪	[−1.00, −0.88]∪	[−1.07, −0.83]∪	[−1.11, −0.83]∪
	[0.90, 1.11]	[0.90, 1.10]	[0.84, 1.12]	[0.87, 1.19]
ĸw	$0.91^{+0.10}_{-0.12}$	+0.10 -0.11	$0.91^{+0.12}_{-0.15}$	$0.92^{+0.14}_{-0.17}$
K _t	$0.87^{+0.15}_{-0.15}$	+0.15 -0.18	$0.98^{+0.21}_{-0.20}$	$0.77^{+0.20}_{-0.18}$
$ \kappa_{\tau} $	$0.90^{+0.14}_{-0.16}$	+0.15 -0.14	$0.99^{+0.20}_{-0.20}$	$0.83^{+0.20}_{-0.21}$
КЪ	0.67		0.64	0.71
	[-0.73, -0.47]∪	[−1.24, −0.76]∪	[−0.89, −0.33]∪	[−0.91, −0.40]∪
	[0.40, 0.89]	[0.74, 1.24]	[0.30, 0.94]	[0.35, 1.04]
$ \kappa_{\mu} $	0.2 ^{+1.2}	+0.9	0.0 ^{+1.4}	0.5 ^{+1.4}

Run 1 Results: ATLAS+CMS Combination

