

Electroweak probes in heavy-ion collisions with ATLAS

Iwona Grabowska-Bold (AGH UST, Kraków) for the ATLAS Collaboration

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions Online, June 1st, 2020

INTRODUCTION

- ➤ Electroweak (EW) bosons are important probes of Quark Gluon-Plasma (QGP)
 - ➤ Produced in heavy-ion collisions (HIC) before the QGP is formed
 - ➤ Production rates scale with **collision geometry**
 - ➤ Production mechanism sensitive to initial state i.e. **parton distribution functions** (PDF)
 - ➤ Since partons are bound in nuclei, they can provide input on **nuclear PDF** (nPDF)
 - ➤ They do not carry colour charges, thus, the QGP is transparent to them
 - ➤ Measured yields of EW bosons or their leptonic decay products should be unaffected by the medium (standard candles of HIC)
 - ➤ Provide **calibration** for **jet energy loss** in the QGP (photon-jet, Z-jet)
- ➤ Final results on photons, Z and W[±] from ATLAS are discussed:
 - ➤ Inclusive photons in p+Pb at 8.16 TeV [Phys. Lett. B 796 (2019) 230]
 - ➤ Z and W[±] bosons in pp at 5.02 TeV [<u>Eur. Phys. J. C 79 (2019) 128</u>]
 - ➤ Z bosons in Pb+Pb at 5.02 TeV [Phys. Lett. B 802 (2020) 135262]
 - ➤ W[±] bosons in Pb+Pb at 5.02 TeV [Eur. Phys. J. C 79 (2019) 935]
- ➤ New result on light-by-light (LbyL) scattering:
 - \blacktriangleright Rare $\gamma\gamma \to \gamma\gamma$ process and serach for $\gamma\gamma \to a \to \gamma\gamma$: [ATLAS-CONF-2020-010]

ATLAS DETECTOR

Three main components: inner tracker, electromagnetic (EM) and hadronic (HAD) calorimeters, and muon system

Photons: inner tracker, EM and HAD calo

$$E_{\rm T}^{\gamma} > 20 \text{ GeV in p+Pb}$$

 $E_{\rm T}^{\gamma} > 2.5 \text{ GeV LbyL in Pb+Pb}$

Electrons: inner tracker, EM calo

$$p_{\rm T}^e > 20~(25)~{\rm GeV}~{\rm for}~Z~(W^{\pm})$$

Muons: inner tracker, muon system

$$p_{\rm T}^{\mu} > 20 \ (25) \ {\rm GeV} \ {\rm for} \ Z \ (W^{\pm})$$

$$|\eta^{\gamma,\ell}| \lesssim 2.5$$

NUCLEAR MODIFICATION FACTORS FOR PHOTONS

- ➤ $R_{p\text{Pb}}$ sensitive to $3 \times 10^{-3} < x_{\text{A}} < 4 \times 10^{-1}$ shadowing, $0.4 < x_{\text{A}} < 0.1$, antishadowing $0.1 < x_{\text{A}} < 0.3$ and EMC $0.3 < x_{\text{A}} < 0.7$
- $ightharpoonup R_{p ext{Pb}}$ measured as a function of $E_{ ext{T}}^{\gamma}$ and η^*
 - $ightharpoonup R_{pPb}$ consistent with unity: in the forward, and at mid-rapidity and low E_T
 - $ightharpoonup R_{pPb}$ tends to **drop below unity**: at mid-rapidity and high E_T, and in the backward
 - ➤ Sensitive to different composition of u- and d-quarks in p+Pb wrt pp (isospin effect)
 - ➤ Data is consistent with both CT14 and EPPS16 within the present uncertainties
 - ➤ Similar conclusions for nCTEQ15

$$R_{p ext{Pb}} = rac{rac{d\sigma^{p ext{Pb}}}{dE_T^{\gamma}}}{Arac{d\sigma^{pp}}{dE_T^{\gamma}}}$$

INITIAL ENERGY LOSS FOR PHOTONS

- ➤ Initial-state energy-loss prediction from I. Vitev et al [Phys. Lett. B 669 (2008) 337, Phys. Rev. C 92 (2015) 054911]
 - ➤ Energetic partons undergo multiple scattering in the cold nuclear medium and lose energy due to medium-induced gluon bremsstrahlung, before the hard collision
 - Parameters: μ parton–gluon momentum transfer and λ_q mean free path for quarks
 - ightharpoonup Data disfavours a large suppression of $R_{p\text{Pb}}$ from initial-state energy-loss effects

Z AND W BOSONS IN PP COLLISIONS

[Eur. Phys. J. C 79 (2019) 128]

- ➤ W+, W- and Z bosons measured in combined muon and electron channels in 5.02 TeV pp collisions
 - ➤ Reference data for EW bosons in Pb+Pb collisions
- ➤ Fiducial cross sections measured to within 1.2-1.7%
- ➤ Data compared to **NNLO** QCD predictions using various PDFs
- ➤ NNPDF3.1 in good agreement with data
- \triangleright Other predictions exhibit 1–2 σ deviations

Z AND W BOSONS IN PB+PB

- ➤ Normalised W[±] and **Z** boson production yields measured in $|\eta_{\ell}|$ or |y| in 5.02 TeV Pb+Pb
 - ➤ Combined muon and electron channels
- ➤ Data compared to NLO pQCD predictions (**MCFM**) using free PDF CT14 or nPDFs: EPPS16 and nCTEQ15
 - ➤ All predictions account for the **isospin effect**
 - ➤ All predictions describe shape well, while normalisation is underestimated by 2-3% (CT14) and 10-20% (nPDFs)

CHARGE ASYMMETRY

- ➤ Charged-lepton asymmetry of W^{\pm} measured in Pb+Pb (left) and pp (right) collisions at 5.02 TeV
 - > Systematic uncertainties largely reduced in the ratio
 - $ightharpoonup A_{\ell}$ sensitive to the quark content of projectiles
- \blacktriangleright Different shapes and absolute values of A_{ℓ} in the two systems
 - ➤ In Pb+Pb, A_{ℓ} becomes negative due to a larger number of W- over W+ in the most forward bin
- ➤ Good description of the data by predictions with various PDF and nPDF sets

W/Z SCALING WITH CENTRALITY

- ➤ Normalised Z/W[±] boson production yields as a function of centrality $\langle N_{\rm part} \rangle$ test scaling with nuclear thickness function $\langle T_{\rm AA} \rangle = \langle N_{\rm coll} \rangle / \sigma_{\rm NN}^{\rm inel}$ from MCGlauber v2.4
- \blacktriangleright W^{\pm} bosons: normalised yields of W⁺ bosons are about 10% higher than W⁻
- ightharpoonup Z bosons: normalised yields are consistent with σ_{pp}^{Z}
- ➤ Data is compared to NLO CT14 predictions
 - **Good agreement** for Z bosons and for W^{\pm} bosons at mid-central and central events
 - ► W^{\pm} bosons: for $\langle N_{\rm part} \rangle < 200$ (peripheral) the excess of W⁺ (W⁻) up to 0.8 (1.7) σ is observed
 - ➤ Minor difference between MCGlauber v2.4 and v3.2

SHADOWING IN INELASTIC NN CROSS SECTION

- ➤ In the paper by K.Eskola et al [arXiv:2003.11856]
 - ➤ Traditionally $\sigma_{NN}^{inel} = 70$ mb used as input to MCGlauber
 - What about if σ_{NN}^{inel} is modified at high energy in HIC? (gluon shadowing, saturation phenomena)
 - From the fit to η , y-dependent normalised yields: $\sigma_{\text{NN}}^{\text{inel}} = 41.5^{+16.2}_{-12.0} \text{ mb}$
 - ➤ **Very good agreement** in R_{PbPb} for Z and W bosons
 - \triangleright Conclusion: Standard paradigm of using $\sigma_{NN}^{inel} = 70$ mb may lead to a misinterpretation of the experimental data

LIGHT-BY-LIGHT SCATTERING AND AXIONS

- ► **NEW** result on **LbyL** scattering $(\gamma \gamma \rightarrow \gamma \gamma)$ from ATLAS
 - ➤ Fundamental QED process with a tiny cross section
 - ➤ Prior to the LHC, tested indirectly (anomalous magnet moment of the electron and muon)
 - Sensitive to new physics
 - ➤ Possible contributions from new particles beyond SM
 - ➤ Anomalous gauge couplings
- Earlier results at the LHC:
 - ➤ Evidence with 2015 data: ATLAS and CMS [Nat. Phys. 13 (2017) 852–858, Phys. Lett. B 797 (2019) 134826]
 - ➤ **Observation** with **2018** data: ATLAS [Phys. Rev. Lett. 123 (2019) 052001]
- ➤ Several improvements introduced in the NEW result:
 - ➤ All Run-2 Pb+Pb data (2015+2018): 2.2 nb-1
 - ➤ Improved luminosity calibration: 3.2% uncertainty
 - ➤ Lower photon E_T threshold (E_T>2.5 GeV)
 - ➤ **Differential** cross sections
 - ➤ Search for axion-like particles (ALP)

Very good agreement between 2018 data and MC simulation (STARLight)

LIGHT-BY-LIGHT CROSS SECTIONS

1.2

1.8

2.4

 $y_{\gamma\gamma}$

0.6

- ightharpoonup Cross section in the fiducial region $E_{\rm T}^{\gamma} > 2.5~{\rm GeV}, \, m_{\gamma\gamma} > 5~{\rm GeV}, \, |\eta^{\gamma}| < 2.4, \, p_{\rm T}^{\gamma\gamma} < 1~{\rm GeV}$ $\sigma_{\rm fid}^{\rm meas} = 120 \pm 17 \text{ (stat.)} \pm 13 \text{ (syst.)} \pm 4 \text{ (lumi.)} \text{ nb}$
- Comparison to theory predictions

 $\sigma_{\rm fid}^{\rm theory1}=80\pm 8~{\rm nb}~{\rm by~M.Klusek\text{-}Gawenda~et~al.}$ [Phys. Rev. C 93 (2016) 044907] $\sigma_{\rm fid}^{\rm theory2} = 78 \pm 8 \text{ nb from SuperChic 3.0 [Eur. Phys. J. C 79 (2019) 39]}$

- ➤ Theory about 50% below data
- ➤ Differential cross sections measured in four variables: $m_{\gamma\gamma}$, $|y_{\gamma\gamma}|$, $|\cos\theta^*|$, $(p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/2$
 - ➤ Good agreement in shape, differences in the normalisation

SEARCH FOR ALP

- ➤ Distribution of $m_{\gamma\gamma}$ used to **search for ALP** in $6 < m_{\gamma\gamma} < 100$ GeV range using a cut-and-count method
 - ➤ Signal: $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$, BR $(a \rightarrow \gamma\gamma) = 100\%$
 - ► Background: LbyL, $\gamma\gamma \rightarrow e^+e^-$, central exclusive production of $gg \rightarrow \gamma\gamma$
- ▶ 95% CL limits on σ and coupling $1/\Lambda_a$
 - ► Largest deviation of 2.1σ at $m_{\gamma\gamma} \sim 10 \text{ GeV}$
 - ➤ The most stringent limit established for ALP masses between 6-100 GeV

SUMMARY

- ➤ **Final** results on **prompt photons** in **8.16 TeV p+Pb** collisions provide insight into initial-state physics
 - ➤ Important role of the **isospin effect** in the backward direction
 - ➤ With the current precision both w/o and w/ nuclear PDFs are supported
- ➤ Final results on Z and W[±] bosons in pp and Pb+Pb collisions at 5.02 TeV from 2015
 - ➤ Most precise results from the LHC at the moment
 - ➤ **Isospin effect** very important to describe W[±] bosons
 - > Standard candles of HIC
- ➤ New preliminary result on light-by-light scattering and search of axion-like particles with full Run-2 Pb+Pb data
 - ➤ Measurement of total fiducial and differential cross sections
 - ➤ Most stringent limits on ALP production for $6 < m_a < 100$ GeV established
 - ➤ Poster by **Klaudia Maj** on June 2nd at 7:30am
- ➤ About **3 times** more data from the **2018 Pb+Pb** run at 5.02 TeV available
 - \triangleright Results on γ -jet and **Z**-jet correlations presented by **Jeff Ouellette** on June 4th at 1:30PM
- ➤ All results from ATLAS available at https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

BACK-UP SLIDES

[Phys. Lett. B 796 (2019) 230]

- ▶ Photon production cross sections in photon E_T measured in 20-500 GeV in three centre-of-mass η^* slices in 8.16 TeV p+Pb collisions
- Measurement sensitive to $3 \times 10^{-3} < x_A < 4 \times 10^{-1}$ (shadowing $x_A < 0.1$, anti-shadowing $0.1 < x_A < 0.3$ and EMC $0.3 < x_A < 0.7$)
- ➤ Data compared with NLO pQCD calculation from JETPHOX (direct+fragmentation contributions) +CT14+EPPS16
 - \blacktriangleright Prediction is systematically lower than the data by up to 20% at low E_T and closer to the data at high E_T
 - ➤ Observation consistent with measurements in pp collisions

FORWARD-BACKWARD RATIOS

ightharpoonup Conclusions similar to those for $R_{p\mathrm{Pb}}$

PHOTON EFFICIENCY IN ATLAS

➤ Efficiency split into three parts: reconstruction (Reco), identification (ID), and isolation (Iso)

GLAUBER MODELS

- ➤ By default $\langle T_{AA} \rangle$ is evaluated using MCGlauber v2.4
- ➤ Comparison to new MCGlauber v3.2 with improvements to geometric modelling
 - ightharpoonup Updated $\sigma_{\mathrm{NN}}^{\mathrm{tot,inel}}$, separate radial distributions for protons and neutrons in Pb, neutron-skin effect
 - ➤ Overall only **tiny improvement** wrt MCGlauber v2.4

NUCLEAR MODIFICATION FACTOR

- ➤ R_{AA} for W^- and W^+ is different from unity due to the isospin effect
 - ➤ More **valence-d** quarks in Pb: enhancement of W⁻ and suppression of W⁺ relative to the pp system
 - ➤ Data compared to CT14 NLO predictions which do not fully describe R_{AA}

- ➤ R_{AA} for W^- , Z, W^+ bosons using the HG-PYTHIA model [Phys. Lett. B 793 (2019) 420]
 - ➤ Centrality bias in peripheral collisions
 - ➤ Proved to describe charged-hadron R_{AA} from ALICE
 - ► W^- , Z, W^+ boson data goes in the opposite direction

NORMALISED CROSS SECTIONS FOR LBYL

► Good agreement between measured and predicted $1/\sigma^{\rm fid}d\sigma^{\rm fid}/dX$

ALP SEARCHES

