Probing initial and final state effects with Z bosons in PbPb and Drell-Yan in pPb with CMS

Austin Baty for the CMS Collaboration <u>abaty@rice.edu</u> **Rice University**

> Hard Probes 2020 **Online Conference** June 3rd

ATLAS

2 1

|y^z|

- Z/γ^* lifetime is ~ the QGP formation time in HI collisions
 - Should not be modified by QGP cleanly probe initial state
- Previous yield and v₂ measurements support this
 - Limited precision in peripheral events
- Sensitive to valence and sea quark distributions tests nPDFs
 - pPb data used in nPDF fits currently limited to Z mass region

Search for onset of jet quenching

- Studies of high p_T charged hadrons have indicated a suppression in peripheral events
 - Problem for jet quenching interpretation in peripheral events
- Recently HG-PYTHIA proposes a mechanism for non-medium suppression in charged hadrons
 - Geometric biases on initial nucleon-nucleon impact parameter
 - Centrality selection biases hard/soft correlations
- ATLAS data seems to indicate opposite trend for Z, W bosons
 - Precise peripheral yield measurements needed

Testing nPDFs with Drell-Yan in 8.16 TeV pPb HIN-18-003

Also see Émilien Chapon's poster: Tuesday 7:30

Dimuon Mass Distribution

- 2016 8.16 TeV pPb (173 nb⁻¹)
- $Z \rightarrow \mu^+ \mu^-$ Channel
- $10 < m_{\mu\mu} < 600 \ GeV$
 - Able to probe to lower x region!

- *tt*, Electroweak, QCD backgrounds subtracted
- Large signal/background ratio
- Data tends to overshoot MC at low $m_{\mu\mu}$

Dimuon Mass Distribution

- 2016 8.16 TeV pPb (173 nb⁻¹)
- $Z \rightarrow \mu^+ \mu^-$ Channel
- $10 < m_{\mu\mu} < 600 \ GeV$
 - Able to probe to lower x region!

- *tt*, Electroweak, QCD backgrounds subtracted
- Large signal/background ratio
- Data tends to overshoot MC at low $m_{\mu\mu}$

- Rapidity differential cross section measured for low and Z mass
- Compared to CT14 pdf and CT14+EPPS16 nPDF
- Favors nPDF around Z mass; low mass inconclusive

Rapidity Distributions

- Uncertainties are comparable to nPDF uncertainties
- Full correlation matrix available
 - Allows correct treatment of correlated uncertainties in global fits

Rapidity Distributions

pt Distributions

- Differential cross sections
- Difficult to distinguish between different (n)PDFs

• Powheg undershoots data at low pT, $m_{\mu\mu}$ - better modeling needed in this region $_{_9}$

Forward-Backward Ratios

- Ratio of forward-backward yields cancels systematic uncertainties
- Clear preference for CT14+EPPS16 around Z mass
- Uncertainties significantly smaller than existing nPDF uncertainties

Probing the initial state with Z bosons in 5 TeV PbPb HIN-19-003

- 2018 5 TeV PbPb (1.7 nb⁻¹)
- $|\eta_{\mu}| < 2.4, |\eta_{e}| < 2.1, p_{T}^{l} > 20 \ GeV$
- Large signal/background ratio

Nass Peaks

- v₂ measured with 3-subevent method (forward calorimeters and tracker)
- η -gap of >3 units (suppresses non-flow)
- Both channels combined into 1 measurement
- Consistent with Z bosons being created early and not being modified by medium

2

 $Q_Z Q_A^*$ v_2 $\langle Q_A Q_B^* \rangle \langle Q_A Q_C^* \rangle$

Rapidity compared to models

- Differential cross section compared to MadGraph5_aMC@NLO + 3 (n)PDF sets
- Models scaled by $T_{AA}\sigma^{MB}_{PbPb}$ (correlated scale uncertainty)
- Data slightly favors steeper decrease in forward region
- Can't conclusively distinguish between (n)PDF sets with current precision

pt differential cross section

- Similar comparison made for p_T differential cross section
- Deviation between models observed at p_T>40 GeV
- p_T modeling of aMC@NLO is not perfect difficult to extract nPDF information • Potentially a useful probe in the future?

- Numerator of RAA
 - Consistent with σ_Z^{NN} from MC

- Data is flat in 0-40%
- Consistent with previous measurements of N_{col} scaling

Centrality Dependence

- 40-90% deviates from flat scaling at σ_{7}^{NN}
 - 2.8σ effect in 70-90%
- Effects considered in HG-PYTHIA
 - Initial geometry biases in b_{NN}
 - Centrality selection biases
 - Hard process correlated with more soft production
- Uncertainties similar to Glauber uncertainties N_{Z} Advantageous to replace TAA with - σ_{7}^{NN}

Peripheral events

-: possible cancellation of biases

- New pPb Drell-Yan measurement extended to lower mass region to offer new nPDF constraints
- Shadowing in EPPS16 favored over free nucleon pdf
- PbPb Z boson v_2 consistent with zero and yields support N_{col} scaling in central events
- Downward trend seen in peripheral Z boson yields seems to be described by HG-PYTHIA

CT14

• Z provides data-driven method to study bias effects when searching for onset of jet quenching

Conclusions

pPb ϕ^* Distributions

$$\phi^* \approx p_T / m_{\mu\mu} \qquad \phi^* \equiv \tan$$

Only depends on angular variables - better resolution than p_T measurement

3-subevent v₂ method

$$Q_n = \sum_{k=0}^M \omega_k e^{in\phi_k}$$

Previous pPb result

- Run HIJING to calculate N_{coll} and N_{MPI}
- Superimpose N_{coll} Pythia MB events that have the same number of MPIs
 - These events have no QGP physics
- Perform a centrality calibration
- Plot R_{AA} by comparing to cross section from pp collisions
- Geometry biases <b_{NN}> can be biased for different b_{PbPb}
- Centrality selection bias correlations in hard/soft production can cause migration of event with hard processes to higher centrality
 - Leads to depletion in peripheral events

HG-PYTHA

Comparison to ATLAS - Glauber versions

- Choice of TGlauberMC version can affect peripheral results a bit
- CMS uses v3.2
 - Orange points should be used for a fair comparison with ATLAS

Comparison to ATLAS

- Scaled ATLAS RAA by σ_{NN}^{Z} to try to make a comparison
 - Note: could still be some difference in normalization
- Roughly estimated compatibility
 - CMS T_{AA} uncertainty ignored
- Central bins roughly consistent
- 40-50% centrality: ~1.8 σ deviation
- ATLAS 50-60% vs. CMS 50-70%: <1 σ
- ATLAS 60-80% vs.
 - CMS 50-70%: ~2σ
 - CMS 70-90%: ~2.7σ
- Correlations between centrality bins (and W/Z channels for ATLAS) are important when interpreting these data
 - For example: the leading syst. uncertainty in the CMS 70-90% bin is quite correlated w/ 50-70%

