Flavor hierarchy of jet quenching in relativistic heavy-ion collisions

Wen-Jing Xing
Central China Normal University (CCNU)

Collaborators: Shanshan Cao, Guang-You Qin, Hongxi Xing

Hard Probe 2020, 1-6 June, Online
Outline

• Introduction

• A next-to-leading-order (NLO) perturbative QCD framework for heavy and light flavor jet and high p_T hadron production

• A Linear Boltzmann Transport (LBT) model for heavy and light flavor jet evolution in QGP

• The nuclear modification factor of heavy and light hadrons

• Summary
Jet quenching in heavy-ion collisions

- Jet quenching (jet-medium interaction) provides valuable tools to probe QGP properties: parton energy loss.
- Jet-medium interaction depends on QGP properties and jet properties (color, mass and energy).
- Jet suppression — the spectra of high p_T hadrons will be modified, quantified with nuclear modification factor:

$$R_{AA} = \frac{dN^{AA}/d^2p_Tdy}{N_{coll}dN^{pp}/d^2p_Tdy}$$
Flavor hierarchy puzzle of jet quenching

- Color & flavor dependences of parton energy loss: \(\Delta E_g > \Delta E_{u,d} > \Delta E_c > \Delta E_b \)

- Expect heavy flavor hadrons exhibit less quenching effects than light charged hadrons.

\[R_{AA}(D) \approx R_{AA}(h^*) \]

- \(R_{AA} \) at high \(p_T \): No significant flavor dependence observed.
Flavor hierarchy of jet quenching

B mesons & B-decayed D mesons

This provides a unique opportunity to study the flavor hierarchy of jet quenching.
High p_T hadron production in pp collisions

In the next-to-leading-order (NLO) framework

$$d\sigma_{pp\to hX} = \sum_{abc} \int dx_a \int dx_b \int dz_c f_a(x_a) f_b(x_b) d\hat{\sigma}_{ab\to c} D_{h/c}(z_c)$$

parton distribution functions (PDFs): CTEQ parameterizations

fragmentation function (FF): include both quark and gluon fragmentations to heavy and light hadron productions

Gluon contribution to heavy quark jet production

- Gluon splitting contribution increases with energy \sqrt{s}.
- Gluon splitting contribution increases with heavy quark jet p_T.

Light charged hadron and D meson production in pp collisions at 5.02 TeV

- **Charged hadrons**: gluon contribution dominates at low p_T and quark contribution becomes more important with increasing p_T.
- **D mesons**: charm and gluon contribute almost equally at low p_T, then gluon contribution decreases with increasing p_T.
- **Both contributions from quarks and gluons have to be taken into account for high p_T hadron suppression in AA collisions.**
A linear Boltzmann transport (LBT) model

Boltzmann equation for parton “1” evolution:

\[p_1 \cdot \partial f_1(x_1, p_1) = E_1 C[f_1] \]

The collision term is:

\[C[f_1] = \int d^3k \left[\omega(\vec{p}_1 + \vec{k}, \vec{k}) f_1(\vec{p}_1 + \vec{k}) - \omega(\vec{p}_1, \vec{k}) f_1(\vec{p}_1) \right] \]

For elastic (2->2) process, the transition rate is related to microscopic cross section as:

\[\omega_{12\rightarrow34}(\vec{p}_1, \vec{k}) = \gamma_2 \int \frac{d^3p_2}{(2\pi)^3} f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \left[1 \pm f_4(\vec{p}_1 - \vec{k}) \right] \]

\[\times \nu_{rel} d\sigma_{12\rightarrow34}(\vec{p}_1, \vec{p}_2 \rightarrow \vec{p}_1 - \vec{k}, \vec{p}_2 + \vec{k}) \]

The elastic scattering rate for (2->2) process:

\[\Gamma(\vec{p}_1, \vec{k}) = \int d^3k \omega(\vec{p}_1, \vec{k}) \]

\[\omega(\vec{p}_1, \vec{k}) = \sum_{2,3,4} \omega_{12\rightarrow34}(\vec{p}_1, \vec{k}) \]

A linear Boltzmann transport (LBT) model

Include the inelastic process:

\[p_1 \cdot \partial f_1(x_1, p_1) = E_1 \left(C_{el} + C_{inel} \right) \]

The inelastic scattering rate (average gluon number per unit time) is:

\[\Gamma_{inel} = \left\langle N_g \right\rangle (E, T, t, \Delta t) / \Delta t = \int dx dk_{\perp}^2 \frac{dN_g}{dx dk_{\perp}^2 dt} \]

The medium-induced gluon spectrum is:

\[\frac{dN_g}{dx dk_{\perp}^2 dt} = \frac{2\alpha_s C_A P(x)}{\pi k_{\perp}^4} \tilde{q} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2} \right)^4 \sin^2 \left(\frac{t - t_i}{2\tau_f} \right) \]

\[\tilde{q} : \frac{dp_{\perp}^2}{dt} \text{ is the momentum broadening due to (2->2) elastic process} \]

Nuclear modifications of charged hadrons

- **QGP fireball**: a (3+1)-dimensional viscous hydrodynamics model CLVisc.

- Due to color effect, quark-initiated hadrons exhibit less quenching effect than gluon-initiated hadrons.

- Combining both quark and gluon fragmentations to charged hadrons, we obtain a nice description of charged hadron R_{AA} over a wide range of p_T.
Nuclear modifications of D mesons

Pb-Pb @5.02 TeV

0 - 10%

- Combining both charm quark and gluon contributions, we obtain successful description of D meson R_{AA}.

- Collisional energy loss gives non-negligible contributions to R_{AA} at not-very high p_T regime and diminishes with increasing p_T.

- A natural solution to the flavor hierarchy puzzle of jet quenching.
Flavor hierarchy of jet quenching

Pb-Pb @5.02 TeV
0 - 80%

Graph showing the variation of R_{AA} with p_T (GeV) for different jet quenching flavors.
Flavor hierarchy of jet quenching

Pb-Pb @ 5.02 TeV 0 - 80%
Flavor hierarchy of jet quenching

Pb-Pb @5.02 TeV 0 - 80%
• Above 30-40 GeV, our model predicts similar suppression effects for B mesons to charged hadrons and D mesons, which can be tested by future measurements.
Flavor hierarchy of jet quenching

Pb-Pb @5.02 TeV 0 - 80%

- Above 30-40 GeV, our model predicts similar suppression effects for B mesons to charged hadrons and D mesons, which can be tested by future measurements.

- Our model can simultaneously describe the nuclear modifications of charged hadrons, prompt D mesons, B mesons and B-decayed D mesons.
Summary

• By incorporating all important ingredients in our pQCD-based jet quenching model, we obtain the first satisfactory description of R_{AA} for charged hadrons, prompt D mesons, B mesons and B-decayed D mesons for $p_T=8-300$ GeV).

• A natural solution to the flavor hierarchy puzzle of jet quenching.

• At $p_T > 30$-40 GeV, B mesons will exhibit similar suppression effects to charged hadrons and D mesons, which can be tested by future measurements.

• With a solid understanding on how jet-medium interaction depends on jet properties (color, mass and energy), we can now use jets to quantitatively probe the QGP properties.
Thank You!