Bottomonia in QGP from lattice QCD: Beyond the ground states

Rasmus Larsen

Brookhaven National Laboratory

June 2. 2020

[Rasmus Larsen, Stefan Meinel, Swagato Mukherjee and Peter Petreczky, arXiv:1910.07374]

Motivation

- Motivation:
	- Use Bottomonium states as probe for change in color screening
	- Experimental results show suppression of Bottomonium states at finite temperature

Approach

• Approach

 \cdot

- Non Relativistic QCD (NRQCD) on lattice
	- $\bullet\,$ with $O(v^4)$ corrections, plus $O(v^6)$ spin corrections
- 2+1 flavor HotQCD configurations from $T = 151 MeV$ to $T = 334 MeV$
- Pion mass 160MeV, Kaon mass physical
- Explore Υ , χ_b
- Main observable: Correlation function $C(\tau)$
	- $C(\tau)$ is the zero momentum of the state of interest

$$
\int d^3x \langle O(\tau, x)O^{\dagger}(0,0) \rangle = C(\tau) = \int_0^{\infty} \rho(\omega) \exp(-\omega \tau) d\omega \qquad (1)
$$

• Invert equation to find spectral function $\rho(\omega)$

Spectral Function

• Plateaus of the effective mass M_{eff} – > Mass state exists in $\rho(\omega)$

$$
M_{eff} = \frac{1}{a} \log[C(t)/C(t+a)] \tag{2}
$$

- Continuum in $\rho(\omega)$ with point sources dominates contribution to correlation function
- Solution:
	- Use sources with finite (extended) size \rightarrow project onto specific region in ω

Extended Sources

• Source calculated from discretized schroedinger equation with confining potential that reproduces zero temperature spectrum

$$
O_i(\mathbf{x},t) = \sum_{\mathbf{r}} \Psi_i(\mathbf{r}) \bar{q}(\mathbf{x}+\mathbf{r},t) \Gamma q(\mathbf{x},t)
$$
 (3)

Continuum Subtracted S-wave

• Extended sources greatly reduces continuum contribution

- Small τ behavior similar at $T = 0$ and $T \neq 0$
- Extract continuum $C_{high}(\tau)$ from $T = 0$ results
- 0 Corresponds to energy of η_b at $T = 0MeV$.

$$
C(\tau) = Ae^{-M\tau} + C_{high}(\tau)
$$

\n
$$
C_{sub}(\tau, T) = C(\tau, T) - C_{high}(\tau)
$$
\n(4)

Finite Temperature Subtracted Effective Mass

- Drop in effective mass as $\tau \to 1/T$
- Linear behavior at small to mid range τ

Information in correlation function is thus

$$
C_{sub}(\tau, T) \sim \exp(-M_{\alpha}\tau + \frac{1}{2}\Gamma_{\alpha}^{2}\tau^{2} + O(\tau^{3}))
$$
(5)

$$
\rho_{\alpha}(\omega, T) = A_{\alpha}(T) \exp\left(-\frac{[\omega - M_{\alpha}(T)]^{2}}{2\Gamma_{\alpha}^{2}(T)}\right) + A_{\alpha}^{\text{cut}}(T) \delta\left(\omega - \omega_{\alpha}^{\text{cut}}(T)\right)
$$

• The mass is found to be consistent with zero temperature results [R. Larsen et al., arXiv:1910.07374]

•
$$
\Delta M_{\alpha} = M_{\alpha}(T) - M_{\alpha}(0)
$$

- \bullet Spectral width grows with temperature like T^2 [R. Larsen et al., arXiv:1910.07374]
- The higher the energy of the state, the wider the spectral function becomes

Picture at finite temperature

- Our results indicate the following picture
	- No significant change in energy/mass of states
	- Large spectral width, such that states start to overlap
	- Spectral function with equal weight at $T = 334 MeV$ shown below

Conclusion

- Novel techniques allow us to explore excited state bottomonia in QGP
- Linear behavior in effective mass observed
- Behavior explained by large spectral width $\sim 160 - 600MeV$
- 2S and 3S, 1P and 2P spectral functions overlap strongly above $T = 200MeV$

Backup

Wilson Lines Correlator

- Same procedure works for Wilson lines Correlator
- Almost no change in energy, but increasing width

Figure: (Left) Energy obtained for $T = 334 MeV$. (Right) Width at several temperatures around 300 MeV.

• Width obtained from Wilson lines correlator consistent with width of Υ when looking at distance of Υ 's average radius.

Dependence on Source

- Slope consistent between smeared sources and wavefunction sources
- Drop off at $\tau \sim 1/T$ smaller for wavefunctions

Spatial Localization of States

- Look at the change in shape using the Bethe-Saltpeter wavefunction
- Shows the distribution of the state as a function of distance r

• No significant difference in shape is seen at $\tau \sim 0.4 fm$

Bethe-Saltpeter Wavefunction 2

- For large temperature BS wavefunction is seen to move out slightly to larger distances as τ increases
- $T=251MeV$

Continuum Subtracted

- Small τ behavior same at $T = 0$ and $T \neq 0$
- Extract difference from groundstate at $T = 0$

• Subtract result from finite temperature result

$$
C_{sub}(\tau,T) = C(\tau,T) - C_{high}(\tau). \tag{6}
$$

Continuum Subtracted P-wave

- Same procedure works for χ_h
- Figure below is for $T = 199MV$

 $\bullet \;\; M_{eff}^{sub}$ goes to energy of the $T=0$ result when extrapolated to $\tau=0$

Ansatz Comparison

- Ansatz with Gaussian spectral function (left) and 3 delta functions representing a width (right) are consistent
- δM_{α} is difference between middle delta function and the two other delta functions

- Width $\sqrt{\langle \omega^2 \rangle \langle \omega \rangle^2}$ is equal to:
	- Γ_{α} for Gaussian ansatz
	- $\bullet \;\, \delta M_{\alpha} \sqrt{2/3}$ for 3 delta functions ansatz