Study of open heavy flavors and heavy jets in a transport approach

Weiyao Ke, in collaboration with Xin-Nian Wang, Wenkai Fan, and Steffen Bass

Hard Probes 2020, the University of Texas at Austin

This work is supported by NSFC 11935007, 11221504, and 11890714, DOE DE-AC02-05CH11231, NSF ACI-1550228, and UCB-CCNU Collaboration Grant.

2 Transport of hard parton and soft energy-momentum in the LIDO model

- 3 Applications to open-heavy flavors and jet observables
- Summary

2/17

- 3 Applications to open-heavy flavors and jet observables

Heavy flavor and jet production

Heavy flavors:

- Flavor tagged hard probes interacting with the quark-gluon plasma.
- Probes single particle evolution. Mass hierarchy of medium modifications.

Jets:

- Initial hard scatterings at large momentum scale $Q \sim p_T$. (perturbative, few-body).
- Parton radiation evolves down to scale $Q \gtrsim \Lambda \rightarrow$ hadronization + decay.

- Experimentally: operational definition by clustering "nearby" particles with distances $d_{ij} = \min(k_{T,i}^{2p}, k_{T,j}^{2p}) \sqrt{\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2}/R$
- Theoretically: analog of parton produced in hard collisions.
- In a medium: interactions between both hard and soft $(\gtrsim 3T)$ partons and the medium.

Reasons to look at heavy-flavor jets

Flavor dependence of single particle R_{AA} Credits to CMS,

NPA 982, 647-650

- Heavy flavor jet suppression: mass effect in medium modifications, heavy trigger effect.
- More differential information helps to constrain model.
 The correlation between medium modified heavy flavor and jet.

2 Transport of hard parton and soft energy-momentum in the LIDO model

- 3 Applications to open-heavy flavors and jet observables
- 4 Summary

Elastic collisions of hard partons

Elastic collisions in a thermal medium

Equilibrium distribution $f(p) \sim e^{-p \cdot u/T}$, T, u from hydrodynamic simulation.

A diffusion equation for small-q interactions

$$\begin{array}{lcl} \frac{dp}{dt} & = & -\eta_D p + \xi, \quad \langle \xi_i \xi_j \rangle = \frac{\delta_{ij}}{2} \hat{q}_s \\ \hat{q}_s & = & \alpha_s C_R m_D^2 T \ln(Q_{\rm cut}^2 / m_D^2) \end{array}$$

• Large-q collision rate,

$$R=\int dk^3 f(k) v_{rel} \int_{q^2>Q_{
m cut}^2} dq^2 rac{d\sigma}{dq^2}$$

Coulomb like cross-section $d\sigma/dq^2 \propto 1/q^4$ for processes with $q^2 \gg m_D^2$.

Medium-induced radiation of hard partons

- Diffusion-induced radiation (1 \rightarrow 2) and large-q inelastic collisions (2 \rightarrow 3).
- The radiation rate is suppressed by $\frac{\lambda}{\tau_f(t)}$ to account for the LPM effect in dense medium + qualitative path-length dependence.
- Dead-cone approximation for gluon radiation from heavy quarks,

$$R_{Qg}^{Q} = R_{qg}^{q} (1 + \theta_{D}^{2}/\theta^{2})^{-2},$$

 $\theta^{2} = \frac{k_{\perp}^{2} (t = t_{0} + \tau_{f})}{k^{2}}, \theta_{D}^{2} = \frac{M^{2}}{F^{2}}.$

A simple ansatz for energy-momentum transported by soft partons

- To impose energy-momentum conservation & behavior of medium excitation¹.
- For energy-momentum deposits to medium $(x_{\perp,0}, \eta_{s,0})$, use linearized hydrodynamic equation for $\delta e, \delta g$ (neglect viscosity, radial flow. Constant c_s , $\eta_s \approx \eta_{s,0}$.)

$$\partial_t e + \vec{k} \cdot \vec{g} = \delta p^0, \quad \partial_t \vec{g} + c_s^2 \vec{k} \vec{e} = \delta \vec{p}$$

• For jet, we only interested in the angular distribution of energy-momentum,

$$(\Delta e, \Delta g)_{k'} = (1, 3c_s \hat{k}) \frac{\delta p^0 + \hat{k} \cdot \delta \vec{p}/c_s}{4\pi} \Delta \Omega_k, \quad x_{\perp} \gg x_{\perp,0}$$

• Convert $\Delta e, \Delta g$ into variation of the (massless) distribution function with an average radial velocity $v \approx 0.6\hat{k}$ for 0-10% Pb+Pb collisions.

$$rac{d\Delta p_T}{d\phi d\eta} = \int \Delta f(p) p_T^2 dp_T$$

Weiyao Ke Hard Probes 2020 (online) UT Austin, June 1, 2020

7 / 17

¹In principle, this requires a coupled evolution of both hard partons and medium. For example, the CoLBT model developed at CCNU, Chen et al. PLB 777 86-90

Simulation framework

- Medium²: 0-10% averaged initial condition + free-stream + (2+1)D viscous hydro.
- A Pythia8 final-state shower down to Q_0 initializes the transport equation. Q_0 around the scale partons acquired from in-medium broadening & induced radiation.
- In-medium transport evolution ceases at $T=160~{\rm MeV}$.
- Use Pythia for radiation outside the medium and hadronization (fragmentation only).

²Modified from hic-eventgen, Bernhard arXiv:1804.06469

2 Transport of hard parton and soft energy-momentum in the LIDO model

- 3 Applications to open-heavy flavors and jet observables
- 4 Summary

8 / 17

The flavor dependence of inclusive particle R_{AA}

9/17

- An leading order running coupling constant with $N_f=3$, $\alpha_s=\frac{2\pi}{9\ln(\max\{Q,\mu_{\min}\}/\Lambda)}$
- ullet Restrict to vary only one parameter μ_{\min} : controls maximum in-medium coupling.
- Reasonable agreement with charged particle³, heavy flavor (D, B) R_{AA} with CMS data⁴ at 5.02 TeV using $\mu_{min} \in [1.5\pi T, 2\pi T]$

Weiyao Ke Hard Probes 2020 (online) UT Austin, June 1, 2020

³The calculation is for π only

⁴Charged R_{AA} JHEP 04 (2017) 039; D-meson PLB 782 (2018) 474; B-meson PRL 119, 152301 (2017)

The flavor dependence of jet R_{AA}

Prediction for light-jet, and heavy-jet R_{AA} using the same parameter range $\mu_{\min} \in [1.5\pi T, 2\pi T]$. To be compared to ATLAS measurement.

- Jet distance parameter R = 0.2.
- B-jet: B meson dR < 0.3, $p_T > 5$ GeV.
- D-jet: D meson dR < 0.3, $p_T > 5$ GeV.
- Light-jet: no B or D within dR < 0.3.

The flavor dependence of jet R_{AA}

The simulation shows a flavor dependence:

- Dashed lines: without dead-cone factor for the medium induced radiation.
- The flavor dependence is only partly due to the dead-cone effect.
- Heavy trigger also selects different jet samples via its production mechanism \to details to be quantified in future work.

Heavy-flavor in jets: radial profile relative to jet

• Radial profile of D meson (4 < p_T < 20 GeV) relaive to jet ($p_T^{\rm jet}$ > 60 GeV) axis.

$$\frac{dP}{dr} = \frac{1}{N_{J,D}} \frac{\Delta N_{J,D}}{\Delta r}$$

- Black: heavy quark move on Eikonal trajectory (losing energy w/o changing direction). An idealized baseline.
- Red: w/ transverse recoil of heavy quark.
- Low-p_T heavy quark has a wider radial profile due to its broadened momentum.

Heavy-flavor in jets: radial profile relative to jet

- Radial profile of D meson ($p_T > 20$ GeV) relaive to jet ($p_T^{\rm jet} > 60$ GeV) axis.
- Black: heavy quark move on Eikonal trajectory.
- Red: w/ transverse recoil of heavy quark.
- Negligible change to radial profile from heavy flavor broadening. Modification to the high- p_T D^0 profile will reflect the "diffusion" of other stuff in the jet.

Heavy-flavor radial profile in jet compared to data

Left: calculation with μ_{\min} variation Right: CMS measurement CMS-PAS-HIN-18-007

- CMS measurement: Jet R = 0.3, $p_T^{\text{jet}} > 60$ GeV, $|\eta| < 1.6$. Lower p_T bin for D^0 , $4 < p_T < 20$ GeV.
- Note the "baseline" is measured in p+p w/o heavy flavor quenching or medium broadening. But still useful as a reference point.
- Compared to the "reference", the current calculation results in a too collimated profile in Pb+Pb.
- Not enough HQ diffusion? Not enough jet axis drifting?

14 / 17

Heavy-flavor radial profile relative to jets: comparison to data

Left: calculation with $\mu_{\sf min}$ variation

Right: CMS measurement CMS-PAS-HIN-18-007

- CMS measurement: Jet R=0.3, $p_T^{
 m jet}>60$ GeV, $\eta|<1.6$. Lower p_T bin for D^0 , $p_T>20$ GeV.
- High p_T D meson profile is also too collimated in Pb+Pb calculation → the model underestimate the decorrelation due to drifting of jet direction.

Weiyao Ke

- 2 Transport of hard parton and soft energy-momentum in the LIDO mode
- 3 Applications to open-heavy flavors and jet observables
- 4 Summary

Summary

- A transport model approach to the hard probes in QGP medium:
 - ▶ Hard partons: elastic collisions + medium induced radiations.
 - ▶ Soft partons: hydrodynamic-like medium excitations.
- We studied open-heavy-flavor and heavy-jet suppression.
 - ▶ Parameter was chosen to fit open heavy flavor and light particle R_{AA}.
 - ▶ A prediction of flavor dependent jet R_{AA} , partly due to dead-cone effect.
- Radial profile of D in jet measures the angular decorrelation of D, jet evolution.
- Current calculations yield in too collimated D profile might suggest insufficient jet axis drifting in the model.

Back up: heavy-flavor in jets, transverse momentum spectrum

- D meson in jets with $p_T^{
 m jet} > 60$ GeV, $dR_{D,J} < 0.3$.
- Black: p+p, Red: Pb+Pb, $1.5\pi T < \mu_{\min} < 2\pi T$.
- The sample of D-mesons in jets focus on large p_T.
 Radiative process dominated and fragmentation hadronization dominated region.

Back-up: Jet finding with both hard and soft momentum transport

- The grid P_{ij}^{μ} is used to do jet finding. Anti- k_T algorithm as implemented in FastJet¹
- The background is implicitly treated as the "unperturbed" medium.

$$P^{\mu}_{ij} = \sum_{\Delta y \Delta \phi} p^{\mu}_{
m hard} + rac{d\Delta p^{\mu}}{d\phi dy} \Delta y \Delta \phi + ext{(background)}.$$

¹Cacciari and Salam, PLB 641 (2006) 57.

Back-up: assumptions for the hydro-like response

Assumptions:

- The frequency / wave-number of the perturbations are much larger than those of the background variation: $[\partial_{\tau}, \partial_{\perp}, \partial_{\eta}/\tau](e, U^{\mu}) \ll [\partial_{\tau}, \partial_{\perp}, \partial_{\eta}/\tau](\delta e, \delta u^{\mu})$.
- Speed-of-sound $c_s \approx \text{constant}$.
- Propagation in the η_s is small: $\Delta \eta_s \sim \frac{\Delta z}{\tau} \sim \frac{c_s \Delta \tau}{\tau} \sim c_s$.
- Neglect radial flow when computing the angular distribution the energy-momentum density.

Then, in the co-moving frame of $u^{\mu} = (\cosh(\eta_s), 0, 0, \sinh(\eta_s))$, we still have,

$$rac{de}{d\Omega_{k'}}\simrac{\delta p^0+\hat{k}'\cdot\deltaec{p}/c_s}{4\pi}, \quad rac{dec{p}}{d\Omega_{k'}}\simrac{3(c_s\delta p^0+\hat{k}'\cdot\deltaec{p})\hat{k}'}{4\pi}$$

Back-up: freeze out effect

- Convert the change in energy-momentum density into change in distribution function (massless particle).
- Use a naïve freeze surface proportional to the velocity profile $\Delta\Sigma\sim\Delta Vu^{\mu}$ with $v_{\hat{k}}=v_r\hat{k}$.

$$\frac{d\Delta p_{T}}{d\phi d\eta} = \int \Delta f(p) p_{T}^{2} dp_{T} = \sum_{i} \int \frac{3}{4\pi} \frac{\frac{4}{3}\sigma u_{\mu} - \hat{p}_{\mu}}{\sigma^{4}} \Delta G_{i}^{\mu}(\hat{k}) \frac{d\Omega_{\hat{k}}}{4\pi}$$

$$\sigma = \gamma_{\perp} \left[\cosh(\eta - \eta_{s} - \eta_{\hat{k}}) - \nu_{\perp} \cos(\phi - \phi_{\hat{k}}) \right]$$

Comparison of a specific scenario with hydrodynamic simulations provided by CCNU,

- A source depositing $dE/dt = dp_x/dt = 1$ GeV/fm, moving from origin to x = 4 fm.
- Need more extensive tests + event averaging.

Medium-induced radiation of hard partons

Infinite static medium:

simulation from transport equation compared to next-to-leading-log solution of the rate in infinite limit.

Finite size effect:

path-length dependence of the radiation rate, simulation compared to numerical solution of the rate in finite medium

L[fm]

17 / 17

L[fm]