

Quarkonia production in pPb collisions

Oscar Boente García on behalf of the LHCb collaboration 02/06/2020 Hard Probes 2020 - Austin, Texas (Online)

> Instituto Galego de Física de Altas Enerxías - USC Contact: oscar.boente@usc.es

Why quarkonia in *p*Pb?

- Quarkonia states are a benchmark for QCD studies
 - produced in the initial state of the collision
 - probe of QGP in PbPb \implies Sequential melting $\Upsilon(nS) \rightarrow \chi_{cn} \rightarrow \psi(2S) \rightarrow J/\psi$
 - simpler systems (pPb) gateway to more complex (PbPb)
- Many effects might play a role in pPb:
 - nPDF modification \rightarrow (anti)shadowing effects HELAC-ONIA: CPC 198 (2016) 238 FONLL: JHEP 05 (1998) 007
 - gluon saturation \rightarrow Color Glass Condensate
 - parton propagation in medium \rightarrow Energy loss
 - break up in nuclear matter
 - break up by comoving particles E. G. Ferreiro et al., arXiv:1804.04474; Phys. Lett. B749 (2015) 98, arXiv:1411
 - Phys. Lett. B749 (2015) 98, arXiv:1411.0549

B. Ducloué et al., PRD 91 (2015) 114005

PRD 94 (2016) 074031

F. Arleo, S. Peigné, JHEP 03 (2013) 122

- Different models can describe data, look at
 - dependencies (η , $p_{\rm T}$, $\sqrt{s_{NN}}$, multiplicity ...)
 - (excited) states

Initial state effects

Final state effects

Óscar Boente García

Quarkonia production in pPb collisions

The LHCb detector

- One-arm spectrometer at LHC fully instrumented in $2 < \eta < 5$
 - Tracking system with momentum resolution

 $\Delta p/p = 0.5 - 1\%$

Excellent hadron and muon ID

Muon $\begin{cases} \varepsilon(\mu \to \mu) \sim 97\% \\ \text{misID } \varepsilon(\pi \to \mu) \sim 1 - 3\% \end{cases}$

- Hadron $\begin{cases} \varepsilon(K \to K) \sim 95\% \\ \text{misID } \varepsilon(\pi \to K) \sim 5\% \end{cases}$
- Precise vertexing

LHCb JINST 3 (2008) S08005 LHCb performance IJMPA 30 (2015) 1530022

- LHCb specially suited for quarkonia studies:
 - Excellent mass resolution even at low $p_T \longrightarrow$ Disentangle $\Upsilon(nS)$ and χ_{cn} states
 - Decay time resolution $\sim 45 \, \text{fs} \longrightarrow$ Separation of prompt vs non-prompt contributions

Datasets and acceptance

Óscar Boente García

- Measuring $J/\psi \rightarrow \mu^+\mu^-$ at $\sqrt{s_{NN}} = 8.16 \,\mathrm{TeV}$
- Improved sample size and precision from 5 TeV analysis (JHEP 02 (2014) 72)
- Discrimination of prompt and non-prompt contribution with pseudo proper time: $t_z \equiv \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z}$
- Simultaneous fit to $M_{\mu^+\mu^-}$ and t_z :

Óscar Boente García

Kinematic coverage:

 $0 < p_{\rm T} < 14 \,{\rm GeV}/c$

 $1.5 < y^* < 4.0$ (forward)

$$-5.0 < y^* < -2.5$$
 (backward)

PLB 774 (2017) 159

Quarkonia production in *p*Pb collisions

5

Óscar Boente García

Quarkonia production in *p*Pb collisions

02/06/2020

6

Óscar Boente García

$\psi(2S)$ production at 5.02 TeV

JHEP 03 (2016) 133

PRC 95, 034904 (2017)

JHEP 12 (2014) 073

PLB 790 (2019) 509

EPJC 78 (2018) 171

- $\psi(2S) \rightarrow \mu^+ \mu^-$ measured with 2013 sample ($\mathscr{L}_{int} = 1.6 \text{ nb}^{-1}$)
- Measured ratio $R \equiv \frac{\sigma_{pPb}^{\psi(2S)}(5 \text{ TeV})}{\sigma_{pPb}^{J/\psi}(5 \text{ TeV})} \times \frac{\sigma_{pp}^{J/\psi}(7 \text{ TeV})}{\sigma_{pp}^{\psi(2S)}(7 \text{ TeV})} \longrightarrow R_{pPb}^{\psi(2S)} = R_{pPb}^{J/\psi} \times R$
- Stronger suppression of prompt $\psi(2S)$ with respect to J/ψ in backward
- Observed also in inclusive measurements of PHENIX, ALICE, CMS, ATLAS
- Fraction from b limited by statistical uncertainties \rightarrow stay tuned for update with 8 TeV data! (x20)

Óscar Boente García

<u>JHEP 11 (2018) 194</u>

- Quarkonium suppression probes deconfinement in PbPb
- $\Upsilon(nS)$ sequential suppression observed in PbPb by CMS and ALICE (PLB 790 (2019) 270, PLB 790 (2019) 89)

Important to explore CNM effects in pPb to understand results

JHEP 11 (2018) 194

Óscar Boente García

$R_{p ext{Pb}}^{\Upsilon(1S)}$ and $R_{p ext{Pb}}^{\Upsilon(2S)}$ vs y^{*}

- Forward: suppression for both states, compatible with nPDFs
- Backward: enhanced suppression for $\Upsilon(2S)$, predicted by nPDFs+comovers

Predictions:

EPPS16: Eur. Phys. J. C (2017) 77: 163

EPPS09: JHEP 04 (2009) 065, arXiv:0902.4154

nCTEQ15: Phys. Rev. D93 (2016) 085037

JHEP 11 (2018) 194

Comovers: arXiv: 1804.04474; Phys. Lett. B749 (2015) 98, arXiv: 1411.0549

Óscar Boente García

- $R_{p ext{Pb}}^{\Upsilon(1S)}$ and $R_{p ext{Pb}}^{\Upsilon(2S)}$ vs $p_{ ext{T}}$
- Clear suppression in forward region
- Compared with nPDF predictions (same for $\Upsilon(1S)$ and $\Upsilon(2S)$)

EPS16: Eur. Phys. J. C (2017) 77: 163 **nCTEQ15**: Phys. Rev. D93 (2016) 085037

- Discrepancies at low $p_{\rm T}$ in forward region for both states

Óscar Boente García

 $R(\Upsilon(nS))_{p\mathrm{Pb}|\mathrm{Pb}p}$

JHEP 11 (2018) 194

- Double ratio of $\Upsilon(2S)$ and $\Upsilon(3S)$ over $\Upsilon(1S)$ in pp and pPb
- Consistent with comovers model
 - Interaction with particles close in phase space dissociates the bound states
 - Suppression linked to comover density

 $\Re \Upsilon(ns)/\Upsilon(1s)$

pPblPbp)/pp

χ_{c1} and χ_{c2} studies at LHCb

- Measuring $\chi_{c1,c2} \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\gamma$ with $\sqrt{s_{NN}} = 8.16 \,\text{TeV}$ dataset
- Analyzing *p*Pb and Pb*p* datasets
- Two strategies to identify the γ :

Analysis ongoing... stay tuned

LHCB-FIGURE-2019-020

Conclusions

- LHCb has an unique program on quarkonia studies in proton-lead collisions
 - J/ψ , $\psi(2S)$ and $\Upsilon(nS)$ at 5 and 8 TeV with dimuon decay channel
 - Stronger suppression at backward rapidity for both charm and beauty excited states
 → described adding final state effect
 - Crucial to understand sequential suppression in PbPb
 - Updates on $\psi(2S)$ and χ_{cn} expected soon
- Just the tip of the iceberg! Many possibilities ahead...
 - Studies vs multiplicity? See Cameron Thomas Dean talk on X(3872) vs multiplicity (Wed. at 12:25)

Backup slides

Óscar Boente García

Quarkonia production in *p*Pb collisions

Comparison non-prompt $R_{p\mathrm{Pb}}$ of non-prompt J/ψ and B^+

Óscar Boente García

Quarkonia production in *p*Pb collisions

$\psi(2s)$ production at 5.02 TeV

JHEP 03 (2016) 133

• Inclusive $\psi(2s)$ (prompt + non-prompt)

Óscar Boente García

Quarkonia production in pPb collisions 0