Probing QCD medium effects in pPb collisions via heavy flavor productions and correlations with the CMS experiment

Yousen Zhang
for the CMS experiment

Rice University

Hard Probes 2020
June 1, 2020
Collectivity in small systems

- Positive v_2 of light flavor hadrons
- Mass order shows common velocity
- Similar observations to large systems

Is the origin of collectivity in pPb collisions the same as that in PbPb? – from the hot medium effects?
Heavy flavor in large systems

• QGP droplet in heavy ion collisions
 • Hot dense medium, partons interacts strongly
 • Perfect fluid, Initial geometric eccentricity hydrodynamically propagate to final states

• Heavy flavor quarks – good probes to initial condition
 • can only be created at initial stage
 • Experience the entire evolution
 • Large v_2 for open charm mesons and charmonia

\[
E \frac{d^3N}{d^3p} = \frac{1}{2\pi p_t dp_t dy} \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_{RF})] \right)
\]
Heavy flavor in large systems

- Nuclear modification
 - Open charm suppression, suffer energy loss
 - Charmonium suppression, Debye screening radius < binding radius
Hot medium effects in small systems?

• Possibly find similar observations in small systems if there is any hot medium effect
 • Collectivity,
 • v_2 for prompt D^0 mesons, prompt J/ψ mesons, beauty quarks …
 • Nuclear modifications
 • R_{ppb} for prompt D^0 mesons, prompt J/ψ mesons …
 • ……

<table>
<thead>
<tr>
<th>Observable</th>
<th>Large system</th>
<th>Small system</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2 for light flavor</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>v_2 for open charm/ charmonia</td>
<td>✓/✓</td>
<td>✓/✓</td>
</tr>
<tr>
<td>v_2 for open bottom/ bottomonia</td>
<td>✓/✓</td>
<td>✓</td>
</tr>
<tr>
<td>Modifications for light flavor</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Modifications for open charm/ charmonia</td>
<td>✓/✓</td>
<td>✓/✓</td>
</tr>
<tr>
<td>Modifications for open bottom/ bottomonia</td>
<td>✓/✓</td>
<td>✗/✓</td>
</tr>
</tbody>
</table>
Mass order at low p_T -- common flow velocity

Similar to PbPb
Prompt J/$\psi(c\bar{c})$ in pPb Collisions

• Can also observe positive v_2 signal for prompt J/ψ

• Calculations based on medium effects inconsistent with data

• Caveat: medium effects may not strong enough in MB samples

v_2 for
Prompt J/ψ
Prompt D0
Prompt $J/\psi(c\bar{c})$ in pPb Collisions

- Can also observe positive v_2 signal for prompt J/ψ
- Calculations based on medium effects inconsistent with data
- Caveat: medium effects may not strong enough in MB samples

![Graph showing v_2 vs p_T for CMS and pPb 8.16TeV data.]

$185 \leq N_{\text{trk}}^{\text{offline}} < 250$

In-medium J/ψ in MB pPb (Du, Rapp, JHEP 03 (2019) 015)
Prompt $J/\psi(c\bar{c})$ in pPb Collisions

- Can also observe positive v_2 signal for prompt J/ψ
- Calculations based on medium effects inconsistent with data
- Caveat: medium effects may not strong enough in MB samples

In-medium J/ψ in MB pPb

June 1, 2020
Yousen Zhang, 10th Hard Probes, 2020
Modifications for charmonia in pPb collisions

- Modifications for prompt J/ψ and prompt $\psi(2S)$ consistent with unity
- $\psi(2S)$ slightly suppressed in backward (Pb-going) compared to J/ψ
- A hint for final state effects

June 1, 2020

Yousen Zhang, 10th Hard Probes, 2020
Modifications for charmonia in pPb collisions

- Modifications for J/ψ and ψ(2S) consistent with unity
- Prompt ψ(2S) slightly suppressed in backward (Pb-going) compared to prompt J/ψ
- A hint for final-state effects?
Medium effects in pPb Collisions

• Multiplicity (system size) has an impact?
An alternative scenario

- An alternative scenario based on initial state interactions – Color Glass Condensate
 - Before collisions, non-zero color electric fields exist
 - Non-geometry-related and non-hydrodynamical evolution
 - Predict large v_2 for Υ and prompt J/ψ
Beauty quarks in pPb Collisions

- Can we observe collectivity of even heavier quarks?
 - b quarks are very heavy and hard to thermalize
 - CGC calculations predict large v_2 for Υ comparable to prompt J/ψ (PRL 122 (2019), 172302)
 - b quarks provide new opportunities to study the medium effects and CGC
Nonprompt D^0 in pPb Collisions

- Nonprompt D^0 originates from b hadron
- Distinguish prompt and nonprompt D^0 by DCA distribution
Nonprompt D^0 in pPb Collisions

- Evaluate $v_{2\Delta}$ in each integrated DCA bin with two particle correlation function
- Extrapolate signal with linear fit
- v_2 obtained from using charged particles as reference
Nonprompt D⁰ in pPb Collisions

- Evaluate in each integrated DCA bin with two particle correlation function
- Extrapolate with linear fit
- v² obtained from using charged particles as reference

![Graph showing v² vs. DCA for pure prompt and nonprompt D⁰](image)

CMS Preliminary

- Data total D⁰
- Combination

pPb 186 nb⁻¹ (8.16 TeV)

- 2 < p_T < 5 GeV
- |y_{lab}| < 1

185 ≤ N_{trk}^{ offline} < 250

June 1, 2020
Yousen Zhang, 10th Hard Probes, 2020

17
Nonprompt D^0 in pPb Collisions

- Evaluate v_2 obtained from $v_{signal}^{2\Delta}$ using charged particles as reference in each integrated DCA bin with two particle correlation function
- Extrapolate with linear fit
- v_2 obtained from $v_{signal}^{2\Delta}$ using charged particles as reference

CMS Preliminary

PbPb 186 nb^{-1} (8.16 TeV)

- Data total D^0
- Combination
- D^0 from b hadrons
- Prompt D^0

$2 < p_T < 5$ GeV

$|y_{lab}| < 1$

CMS-PAS-HIN-19-009

$185 \leq N_{\text{trk}}^\text{offline} < 250$

$3 < p_T < 4$ GeV

$|y_{lab}| < 1$

CMS-PAS-HIN-19-009
• First measurement of b flow in pPb collisions

• Indication of flavor hierarchy between charm and beauty at low p_T

• Comparison between CGC calculations and data
Nonprompt D^0 in pPb Collisions

- First measurement of b flow in pPb collisions
- Indication of flavor hierarchy between charm and beauty at low p_T
- Comparison between CGC calculations and data

June 1, 2020
Yousen Zhang, 10th Hard Probes, 2020
First measurement of b flow in pPb collisions

Indication of flavor hierarchy between charm and beauty at low p_T

Comparison between CGC calculations and data
Summary and future

- A comprehensive study of heavy flavor collectivity in small systems
 - Observation of strong charm collectivity
 - First measurement of bottom collectivity in pPb collisions, which is much smaller
 - Hint of charmonia suppression for $\psi(2S)$ via final-state effects
 - Medium effects or CGC still on debate

- Future
 - Modifications for heavy flavors
 - Correlations between heavy flavors
 -
Backup
Prompt D^0 in pPb Collisions

- $D^0 (c\bar{u})$ reconstruction
Prompt D^0 in pPb Collisions

- D^0 reconstruction

- Two particle correlation techniques

\[
\frac{1}{N_{D^0}} \frac{dN^{\text{pair}}}{d\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi} \left[1 + \sum_{n=1}^{3} 2V_{n\Delta}\cos(n\Delta\phi) \right]
\]

\[
v_n(D^0) = V_{n\Delta}(D^0, \text{ref}) / \sqrt{V_{n\Delta}(\text{ref}, \text{ref})}
\]
Prompt D^0 in pPb Collisions

- D^0 reconstruction
- Two particle correlation techniques
- Signal extraction

\[v_{2}^{S+B}(m_{inv}) = \alpha(m_{inv}) v_{2}^{S} + [1 - \alpha(m_{inv})] v_{2}^{B}(m_{inv}) \]
Backup

Backup System size and Collectivity

- Positive v_2 is observed in high multiplicity events
- v_2 of prompt D^0 in pp collisions is comparable to that in pPb collisions with similar multiplicity under large uncertainty
- Non-zero v_2 of prompt D^0 mesons diminish towards low-multiplicity regimes
Backup nonflow

\[V_{n\Delta}^{\text{sub}} = V_{n\Delta} - V_{n\Delta}(N_{\text{trk}}^{\text{offline}} < 35) \times \frac{N_{\text{assoc}}(N_{\text{trk}}^{\text{offline}} < 35)}{N_{\text{assoc}}} \times \frac{Y_{\text{jet}}}{Y_{\text{jet}}(N_{\text{trk}}^{\text{offline}} < 35)}. \]
Backup

Large nuclei

Small nucleon, low temperature (energy density)

Small nucleon, high T

Smaller system size

Ridge in high multiplicity events

No ridge in low multiplicity events