

Measurements of electron production from heavy flavor decays in p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at STAR

for the STAR Collaboration Central China Normal University

Jun 4, 2020

Yingjie Zhou

Heavy Quarks: unique probes of the QGP

- •Heavy flavours (c and b) are mainly produced in initial hardscattering processes because of their large masses
- •Undergo elastic (collisional) and inelastic (radiational) energy losses \rightarrow sensitive to transport properties of QGP
- Energy loss mechanisms: expected to loss less energy in QGP compared to light quarks
- Mass effects: $M_{u,d,s} < M_c < M_b \rightleftharpoons \Delta E_b < \Delta E_c < \Delta E_{u,d,s}$
- →pp collisions:
- Test pQCD calculations
- Reference for measurements in heavy-ion collisions

Non-Photonic Electrons (NPE)

- Produced from semi-leptonic decays of open heavy flavor hadrons
- •A good proxy to measure heavy flavor quark production

$\sqrt{s} = 200 \text{ GeV p+p collisions}$

•Bottom- and charm-decayed electron fractions

$\sqrt{s_{NN}} = 200 \text{ GeV Au} + \text{Au collisions}$

•Nuclear modification factors of charm- and bottom-decayed electrons

Outline

Yingjie Zhou, Hard Probes 2020

Electron measurements at STAR

•Electron identification with TPC, TOF, BEMC and HFT (in Au+Au analysis)

Yingjie Zhou, Hard Probes 2020

Barrel ElectroMagnetic Calorimeter (BEMC)

- Trigger on high $p_{\rm T}$ electrons
- PID through p/E

Time Of Flight (TOF)

- PID through velocity $(1/\beta)$
- Timing resolution: ~85 ps

Time Projection Chamber (TPC)

- Tracking, momentum measurement
- PID through dE/dx

 $ln(dE/dx_{measured}) - ln(dE/dx_{exp})$ $n\sigma_e =$

Electron measurements at STAR

•Electron identification with TPC, TOF, BEMC and HFT (in Au+Au analysis)

Barrel ElectroMagnetic Calorimeter (BEMC)

- Trigger on high $p_{\rm T}$ electrons
- PID through p/E

Time Of Flight (TOF)

- PID through velocity $(1/\beta)$
- Timing resolution: ~85 ps

Time Projection Chamber (TPC)

- Tracking, momentum measurement
- PID through dE/dx

Heavy Flavor Tracker (HFT)

- Excellent DCA resolution in both $r\varphi$ and z directions:

~30 μ m at p = 1.5 GeV/c

- Allows to separate c- and b-decayed electrons

Analysis Methods

- •Subtract background sources of electrons
- decay (e.g. $\pi^0 \rightarrow \gamma e^+ e^-$)
- Hadron contamination

p+p analysis

- •Substract non-heavy flavor background (hadrons + photonic electrons)
- •Fit azimuthal correlations of electrons with charged particles to separate charm and bottom electrons

•Electron identification with TPC, TOF, BEMC and HFT (in Au+Au analysis)

• Photonic electrons from γ - conversions, light pseudo-scalar meson Dalitz

Au+Au analysis

•Fit Distance of Closest Approach (DCA) distribution with four DCA templates to separate charm, bottom, hadrons and photonic electrons

Analysis Method (p+p): Remove hadrons + photonic electrons

Yingjie Zhou, Hard Probes 2020

0.1

Semi-inclusive electron: all non-paired trigger electrons after PID $\varepsilon_{\text{purity}}$: purity of inclusive electron sample ε_{γ} : photonic electron reco. efficiency

Analysis Method (p+p): Fit azimuthal correlations

Fit NPE-h correlations from data with separated correlation templates of c-/b-decayed electrons from Monte Carlo: \Rightarrow PYTHIA 8.1 combined with STAR-HF-Tune Version 1.1 to generate e(D)-h and e(B)-h correlations Fit the near-side peak with $B \rightarrow e$ and $D \rightarrow e$ templates from the simulation •Fit function: $(r_{\rm B} * \mathbf{PYTHIA}(\mathbf{B}) + (1 - r_{\rm B}) * \mathbf{PYTHIA}(\mathbf{D})) * Norm$ • $r_{\rm B}$ is B contribution, Norm is a free parameter

Analysis Method (Au+Au): Fit DCA templates

- •Separation of *b* and *c*-decayed electrons with template fit to log of **3D DCA**
- **Hadron shape:** from data, constrained by purity
- ✓Photonic electron shape: from simulation, constrained by photonic electron fraction
- \checkmark HF \rightarrow *e* shape: determined from simulating all ground state B[±], B⁰, **B**_s, Λ_b and **D**[±], **D**⁰, **D**_s, Λ_c semi-leptonic decays

b-hadrons $c\tau \sim 500 \ \mu m$ *c*-hadrons $c\tau \sim 60-300 \ \mu m$ Larger ct of b-hadrons w.r.t. c-hadrons $\langle DCA(b \rightarrow e) \rangle > \langle DCA(c \rightarrow e) \rangle$

Bottom—e fraction in p+p collisions

•Bottom electron fraction: Increase with p_{T} , and surpassing $c \rightarrow e$ contribution for $p_{T} > 5 \text{ GeV}/c$ FONLL calculation consistent with data

Yingjie Zhou, Hard Probes 2020

FONLL: JHEP 1210 (2012) 137 STAR 2006 pp: PRL 105 (2010) 202301

Bottom—e fraction in Au+Au collisions

Bottom $\rightarrow e R_{AA}$

• $R_{AA}(b \rightarrow e) > R_{AA}(c \rightarrow e)$ significant at ~ 3σ •DUKE Langevin model calculation consistent with data (consistent with $\Delta E(b) \leq \Delta E(c)$) •Null hypothesis $[R_{AA}(B)=R_{AA}(D)]$ for $p_T(e) \in [2.5, 5.5]$ GeV/*c* $\Box \chi^2 / \text{ndof} = 8.6/2$, p-value = .014

Double Ratio of R_{CP}

•Large cancelation of correlated systematic uncertainties

 \Rightarrow Constant fit to double ratio >1 significant at 3.5 σ and 4.4 σ for R_{CP} (0-20%/40-80%) and R_{CP} (0-20%/20-40%)

DUKE: PRC 92 (2015) 024907 Private Communication

Yingjie Zhou, Hard Probes 2020

•p+p collisions →Charm and bottom-decayed electron fractions described by pQCD calculation

•Au+Au collisions →Measured $b \rightarrow e$ suppression less than $c \rightarrow e$ with $\geq 3\sigma$ significance ($R_{AA}(B) > R_{AA}(D)$)

✓ Consistent with the predicted quark-mass dependent energy loss ($\Delta E(b) < \Delta E(c)$)

Backup slides follow

Charm—e Elliptic Flow in Au+Au collisions

- thermalize in QGP until hadronization)

Yingjie Zhou, Hard Probes 2020

•Second order event plane measured with TPC tracks($|\eta| < 1$) using η -sub event method •Charm electron v_2 is consistent with folded D⁰ v_2 and DUKE model(charm quarks largely

 \blacksquare Measured D⁰ v_2 folded to decayed electron with simulated semileptonic decays in EvtGen

Bottom—e Elliptic Flow in Au+Au collisions

 $\Box FMS(2.5 < \eta < 4.0)$ EP data is consistent within uncertainties with TPC($|\eta| < 1$) EP measurement $\Box \chi^2$ /ndof = 17.1/3, p-value = .00067 (~3.4 σ) \blacksquare Hint of non-zero bottom $\rightarrow e v_2!$