

Measurement of D[±] meson production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV with the STAR experiment

Jan Vanek, for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences

Hard Probes 2020

PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) can be studied using relativistic heavy-ion collisions
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium
- Charm quark energy loss in the medium can be studied by measurement of opencharm meson nuclear modification factor R_{AA}

D⁰ NUCLEAR MODIFICATION FACTOR

Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm D}^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm D}^{\rm pp}/{\rm d}p_{\rm T}}$$

- D⁰ mesons suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium
 - Suppression of D⁰ mesons comparable to light flavor hadrons at RHIC and D mesons at LHC
 - Reproduced by models incorporating both radiative and collisional energy losses, and collective flow
- Measurement of D[±] is complementary to that of D⁰
 - Independent cross-check of the D⁰ measurement
 - Important contribution to total charm crosssection
 - Three-body decay, larger decay length than D⁰

 $\begin{array}{l} D^0 \mbox{ (STAR): Phys. Rev. C 99, 034908, (2019).} \\ \pi^{\pm} \mbox{ (STAR): Phys. Lett. B 655, 104, (2007).} \\ D \mbox{ (ALICE): JHEP 03, 081, (2016).} \\ h^{\pm} \mbox{ (ALICE): Phys. Lett. B 720, 52, (2013).} \end{array}$

LBT (S. Cao *et al.*): Phys. Rev. C 94, 014909, (2016). Duke (Y. Xu *et al.*): Phys. Rev. C 97, 014907, (2018).

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers (PXL1, PXL2), Strip detectors 2 outer layers (IST, SSD)
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

<image>

D[±] **MEASUREMENTS WITH THE HFT**

- Data used in this analysis are from 2014 and 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$
- Total of ca. 2.3B good minimum bias events after event selection
- The HFT allows direct topological reconstruction of D^\pm mesons through their hadronic decay
 - $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$ $c\tau = (311.8 \pm 2.1) \, \mu m$ $BR = (8.98 \pm 0.28) \, \%$

F. Niecknig, B. Kubis: JHEP 1510, 142, (2015)

Event selection

 Position of primary vertex along the beam axis

Track selection

- Low p_T cut suppresses combinatorial background from low-p_T particles
- $|\eta| < 1$ detector acceptance
- Minimum number of hits in the TPC for each track – good track quality
- At least three hits in HFT, one in PXL1, one in PXL2 and at least one in IST or SSD

Particle identification (PID)

- TPC energy loss of charged particles in the TPC gas
- TOF velocity of the charged particles

Topological selection criteria

- Possible only with use of the HFT
- Constrain topology of the reconstructed secondary vertex
- Suppress combinatorial background
- Optimized using TMVA

Event selection

 Position of primary vertex along the beam axis

Track selection

- Low p_T cut suppresses combinatorial background from low-p_T particles
- $|\eta| < 1$ detector acceptance
- Minimum number of hits in the TPC for each track – good track quality
- At least three hits in HFT, one in PXL1, one in PXL2 and at least one in IST or SSD

Particle identification (PID)

- TPC energy loss of charged particles in the TPC gas
- TOF velocity of the charged particles

Topological selection criteria

- Possible only with use of the HFT
- Constrain topology of the reconstructed secondary vertex
- Suppress combinatorial background
- Optimized using TMVA

Jan Vanek, Hard Probes 2020

Event selection

 Position of primary vertex along the beam axis

Track selection

- Low p_T cut suppresses combinatorial background from low-p_T particles
- $|\eta| < 1$ detector acceptance
- Minimum number of hits in the TPC for each track – good track quality
- At least three hits in HFT, one in PXL1, one in PXL2 and at least one in IST or SSD

Particle identification (PID)

- TPC energy loss of charged particles in the TPC gas
- TOF velocity of the charged particles

Topological selection criteria

- Possible only with use of the HFT
- Constrain topology of the reconstructed secondary vertex
- Suppress combinatorial background
- Optimized using TMVA

D[±] **RAW YIELD EXTRACTION**

- Raw yield extracted from invariant mass spectra of Kππ triplets
 - Significant background suppression with TMVA optimization of the topological selection criteria
 - Improved signal significance

D[±] **INVARIANT SPECTRUM**

STAR

Invariant yield is calculated according to:

$$\frac{\mathrm{d}^2 N}{2\pi p_{\mathrm{T}} \,\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = \frac{Y_{\mathrm{raw}}}{2 \,\pi \, N_{\mathrm{evt}} \,BR \, p_{\mathrm{T}} \Delta p_{\mathrm{T}} \Delta y \,\varepsilon(p_{\mathrm{T}})}$$

- $Y_{\text{raw}} = \text{raw yield}, N_{\text{evt}} = \text{number of events}, BR = \text{branching ratio}, \\ \epsilon(p_{\text{T}}) = \text{total } D^{\pm} \text{ reconstruction efficiency}$
- Collision centrality classes: 0-10%, 10-40%, 40-80%
 - Determined from charged track multiplicity in TPC matched to Glauber model simulation

D[±] **INVARIANT SPECTRUM**

- Invariant spectra of D[±] and D⁰ mesons measured in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV
- Spectra are fitted by Levy function
- The D[±] results help to constrain the total open charm cross-section and for better understanding of charm quark hadrochemistry in Au+Au collisions

D[±] NUCLEAR MODIFICATION FACTOR

- Reference: combined D⁰ and D* measurement in 200 GeV p+p collisions using 2009 data
- Similar level of suppression and centrality dependence for D[±] and D⁰
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium

D[±]/D⁰ YIELD RATIO

- The D[±]/D⁰ yield ratio is compared to PYTHIA 8 calculation
 - Good agreement in all Au+Au centrality classes
- No modification of the D[±]/D⁰ yield ratio compared to PYTHIA

CONCLUSION

- STAR has extensively studied production of open-charm mesons in Au+Au collisions at $\sqrt{s_{\rm NN}}$ =200 GeV utilizing the Heavy-Flavor Tracker
- The HFT allows direct topological reconstruction of hadronic decays of open-charm mesons
- D[±] invariant spectrum measured for three centrality classes of Au+Au collisions
 - 0-10%, 10-40%, 40-80%
- D[±] nuclear modification factor is consistent with that of D⁰
 - D⁰ and D[±] mesons are significantly suppressed at high-p_T in central Au+Au collisions
 - Charm quarks interact strongly with the QGP
- D[±]/D⁰ yield ratio
 - Agrees with PYTHIA 8 calculation

THANK YOU FOR ATTENTION

Acknowledgement: This research is funded by the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic

Jan Vanek, Hard Probes 2020

BACKUP

Jan Vanek, Hard Probes 2020

- $^\circ\,$ Example of analysis cuts for D^\pm reconstruction using the HFT
- Event selection
 - Position of primary vertex along the beam axis
- Track selection
 - *p*_T suppresses combinatorial background from low-*p*_T particles
 - nHitsFit large number of TPC hits used for track reconstruction to ensure good track quality
 - Hit in at least three layers of the HFT
- PID: HFT+TPC+(TOF)
 - Hybrid TOF = use TOF only for tracks with valid TOF information
- Topological selection criteria
 - Possible only with use of the HFT
 - Constrain topology of the reconstructed secondary vertex
 - Suppress combinatorial background
 - Optimization using the TMVA

Event selection	$ V_{\rm z} < 6 {\rm cm}$	
	$ V_{\rm z} - V_{\rm z(VPD)} < 3 m cm$	
Track selection	$p_{\rm T}$ > 300 MeV/c (500 MeV/c)	
	$ \eta < 1$	
	nHitsFit > 20	
	nHitsFit/nHitsMax > 0.52	
	HFT track = PXL1+PXL2+(IST or SSD)	
PID cuts	TPC	$ n\sigma_{\pi} < 3$
		$ n\sigma_{K} < 2$
	Hybrid TOF	$ 1/\beta - 1/\beta_{\pi} < 0.03$
		$ 1/\beta - 1/\beta_{\rm K} < 0.03$
Topological selection criteria	DCA _{pair}	
	$L_{ m D\pm}$	
	cos(θ)	
	$DCA_{\pi\text{-PV}}$	
	DCA _{K-PV}	

