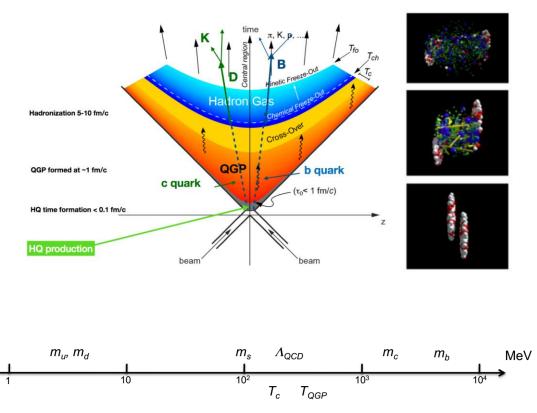
Production of D_s^{\pm} mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV by STAR

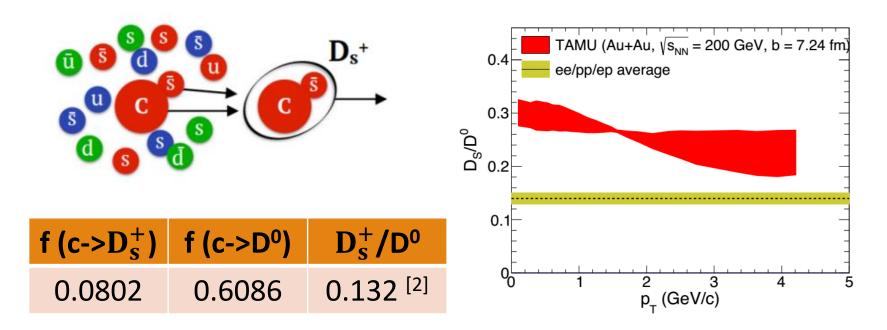
Chuan Fu Central China Normal University *for the STAR Collaboration*



Outline

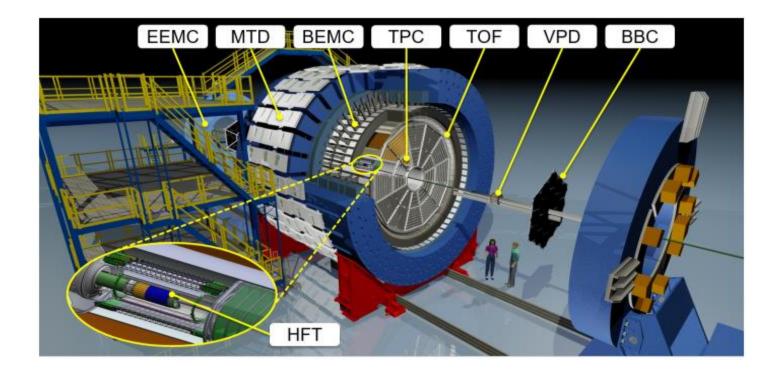
- Motivation
- STAR experiment
- ➢ Results
 - D_s^{\pm} signal extraction
 - $D_s^{\pm} p_T$ spectrum
 - D_s^{\pm}/D^0 ratio

➢Summary


Heavy quarks

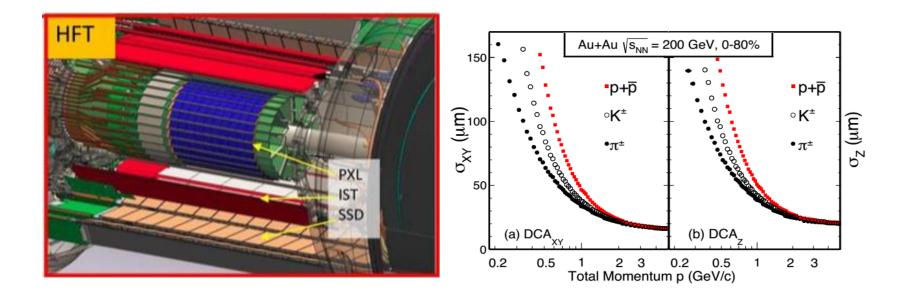
- Heavy quarks are an excellent probe of studying the properties of QGP:
 - ✓ Transport properties (diffusion coefficient)
 - ✓ Energy loss mechanism
- Hadronization in the presence of QGP medium - coalescence hadronization?

 $M_{c,b} >> T_{QGP}$: predominately created from initial hard scatterings; relaxation time comparable with QGP lifetime.

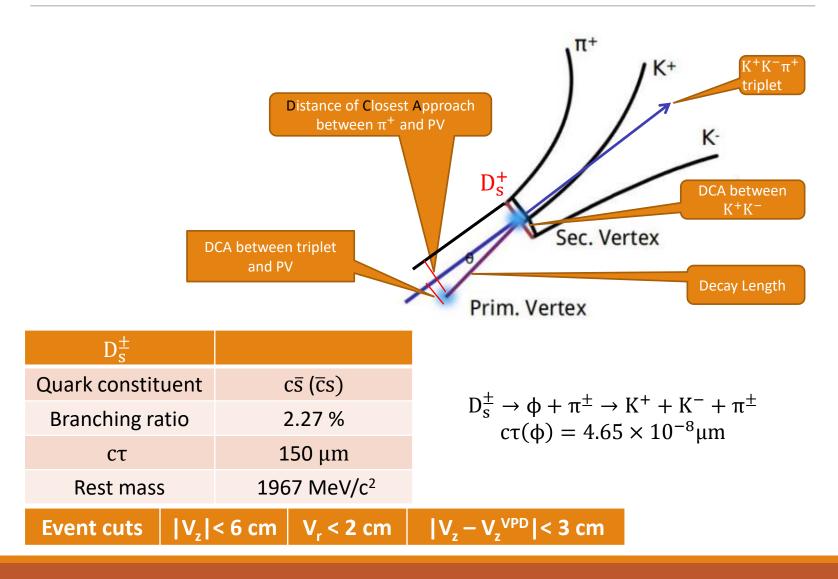

Why study D_s^{\pm} ?

- Strangeness enhancement + coalescence of charm quarks with strange quarks in QGP
- → The D_s^{\pm}/D^0 yield ratio in Au+Au collisions expected to show an enhancement compared to that in ee/pp/ep collisions (fragmentation hardronization). [1] He M, Fries R, Ralf R., Phys. Rev. Lett. (2013) 110: 112301.

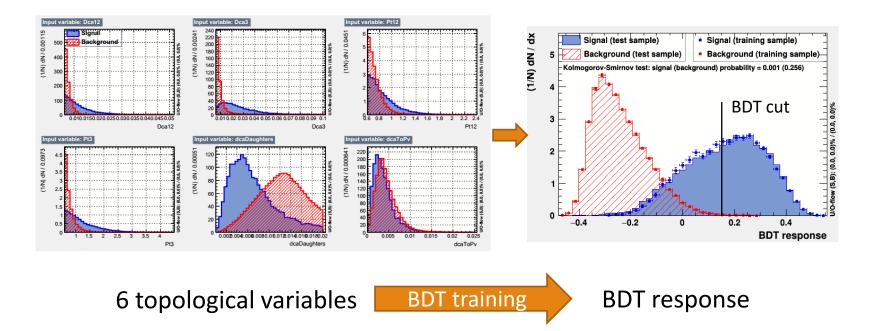
[1] He M, Fries R, Raif R., Phys. Rev. Lett. (2013) 110: 112301.
[2] Lisovyi M, Verbytskyi A, Zenaiev O., Eur. Phys. J. C (2016) 76: 397.


STAR experiment

> TPC + HFT: trajectories and momenta of charged particles (π^{\pm} , K[±])

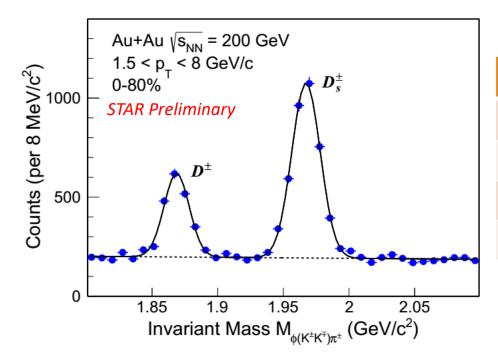

> TPC + TOF: identification of charged particles

Heavy Flavor Tracker



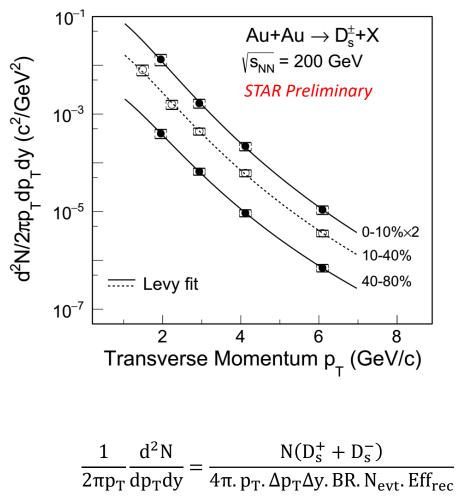
- Heavy Flavor Tracker (HFT, 2014-2016): innermost two layers of Pixel detectors (PXL) + Intermediate Silicon Tracker (IST) + outermost layer of Silicon Strip Detector (SSD).
- Excellent pointing resolution, allows reconstruction of charm hadron decays.
 G. Contin et al., Nucl. Instrum. Meth. A907, 60 (2018)

D_s^{\pm} reconstruction

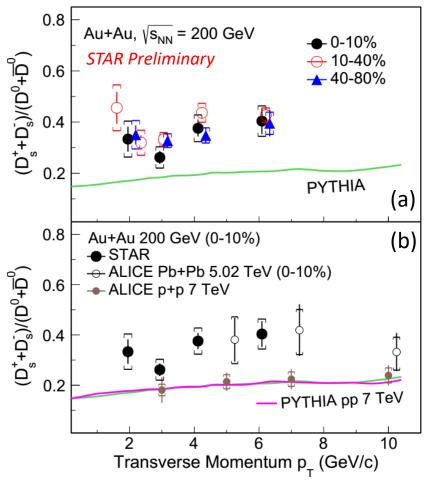


Topological cuts optimization using TMVA-BDT

- Boosted Decision Tree (BDT) method from the Toolkit for MultiVariate Analysis ^[1] was used to improve signal and background separation in D[±]_s reconstruction.
- Signal sample from simulation taking into account detector response; background sample from wrong-sign combinations in data.
- > BDT cut was applied to reconstruct D_s^{\pm} signal with best significance.

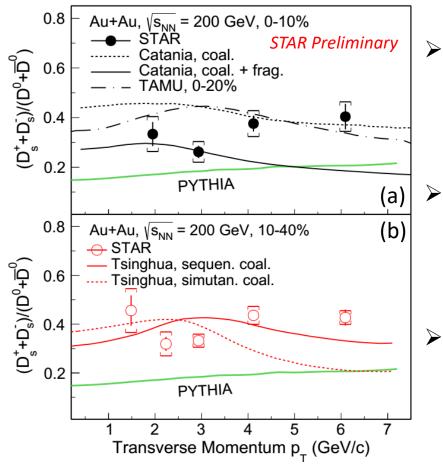

Invariant mass distribution

	Significance
0-80%, 1.5 <p<sub>T<8 GeV/c</p<sub>	
Traditional cuts, 2014	26
BDT method, 2014	34
BDT method, 2014+2016	45


- 2014+2016 data, ~ 2 billion events. The Gaussian + linear function was used to fit data.
- Background described by the linear function.
- Significance is greatly improved with BDT.

$D_s^{\pm} p_T$ spectrum

- D[±]_s invariant yield fitted by Levy function in various centrality
- Efficiency correction
 - ✓ The acceptance cuts (|η| < 1), TPC tracking cuts, TPC-to-HFT matching, PID cuts and topological variable cuts/BDT cuts are applied in fast simulation to evaluate efficiencies.
- ➤ The measurement reachs to low p_T (1 GeV/c), providing better constraints on the total D[±]_s production.
 - ✓ Fraction of the total production from measured p_T region is ~60%.


D_s^{\pm}/D^0 ratio

- D[±]_s/D⁰ yield ratio: large enhancement (~1.5-2 times) relative to PYTHIA; no obvious p_T dependence.
- PYTHIA calculation consistent with ALICE data for 7 TeV p+p collisions ^[1].
- Compatible with ALICE data in Pb+Pb collisions ^[2] in the overlapping p_T region.

ALICE Collaboration, Acharya S, et al., Eur. Phys. J. C (2017) 77: 550.
 ALICE Collaboration, Acharya S, et al., J. High Energ. Phys. (2018) 2018: 174.

Comparisons with model calculations

- The Catania ^[1] and TAMU ^[2] models (only coalescence hadronization): describe the data for $p_T > 4$ GeV/c, but deviates at lower p_T .
- The Catania model (coalescence + fragmentation hadronization): describe the data for p_T < 4 GeV/c, but disagrees with data for p_T > 4 GeV/c.
- Tsinghua model ^[3] (sequential coalescence hadronization): qualitatively describe our measurements.

Plumari S, Minissale V, Das S K, et al., Eur. Phys. J. C (2018) 78: 348.
 He M, Ralf R., In preparation (2019).
 Zhao J, Shi S, Xu N, Zhuang P., arXiv (2018):1805.10858.

Summary

- The D_s^{\pm} invariant yield and D_s^{\pm}/D^0 yield ratio are measured as a function of p_T for different collision centrality at mid-rapidity (|y| < 1) in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.
- D[±]_s/D⁰ yield ratio shows large enhancement compared to PYTHIA at 200 GeV.
 - The data can be qualitatively described by model calculation incorporating strangeness enhancement and (sequential) coalescence hadronization of charm quarks.
- Coalescence hadronization plays an important role in charm quark hadronization in heavy-ion collisions.