Charmonia production with a density operator model

Hard Probes 2020

Online@us.earth

P.B. Gossiaux SUBATECH, UMR 6457 Université de Nantes, IMT Atlantique, IN2P3/CNRS

with

Denys Yen Arrebato Villar, J. Aichelin, T Song, E. Bratkovskaja

Motivation & Background

The two faces of quarkonia production

Sequential dissociation

Main goal: describe with good precision the dissociation / melting of some quarkonia wannabe QQbar pair: recent progresses due to Open Quantum System approach + improved knowledge of the dissociation rate

Q-Qbar recombination

How do we understand and describe the recombination of \approx 100 c and 100 cbar all together at LHC ?

Usual approaches:

- Detailed balance (chemistry)
- Statistical hadronization

More recently: J.P. Blaizot & M. A. Escobedo JHEP06 (2018) 034

Keywords:

- Interaction of heavy quarks with the bulk particles
- Expansion of the medium
- Off-diagonal contributions

Motivation & Background

Generic idea: describe charmonia (Ψ) production using density matrix

$$P^{\Psi}(t) = Tr[\rho_{QQ}^{\Psi}\rho_{N}(t)]$$

$$\rho_{QQ}^{\Psi} = \sum_{i} |\Psi_{QQ}^{i}\rangle\langle\Psi_{QQ}^{i}|$$

N-body density matrix (bulk partons + many c and many cbar)

Single quarkonia density operator

"Just" looking at the initial stage brings interesting features:

Taesoo .S, J.Aichelin and E.Bratkovskaya, PRC 96. 014907 (2017)

Good reproduction of pp -> $J/\psi + x !!!$

considerable enhancement of primordial J/ ψ (in the initial state): large off-diagonal contributions 2/16

Motivation & Background

Dealing with the dynamics?

- The idea of the formalism goes back to Remler's work
- General scheme connecting composite-particle cross section and rates with time-dependent density operators
- Applied by Remler et al to the deuteron production in (low energy) AA collisionsThe formalism is able to deal with many particles (nucleons -> deuterium)

E.A. Remler, ANNALS OF PHYSICS 136, 293-316 (1981)

2020

Apply Remler formalism to quarkonia production in heavy ion collisions

Remler formalism at work

The effective rate for quarkonia state creation (dissociation) in the medium is

$$\Gamma^{\Psi}(t) = \frac{\partial P^{\Psi}(t)}{\partial t} = Tr \left[\rho_{Q\bar{Q}}^{\Psi} \frac{\partial \rho_{N}(t)}{\partial t} \right]$$

Working in the phase space through Wigner distribution

$$W^{\Psi^{i}} = \int d^{3}y e^{ipy} \left\langle r - \frac{y}{2} \left| \Psi^{i} \right\rangle \left\langle \Psi^{i} \right| r + \frac{y}{2} \right\rangle$$

Quarkonia: Double Gaussian approximation

$$W_{QQ}^{\Psi}(r_{rel}, p_{rel}) = C e^{r_{rel}^2 \sigma^2} e^{\frac{\hat{p}_{rel}^2}{\sigma^2}}$$

Parameter: The Gaussian width σ

$$[\frac{\hbar^2}{2\mu}\nabla^2 + V(r)]\Psi_{Q\bar{Q}}(r) = E_{Q\bar{Q}}\Psi_{Q\bar{Q}} \longrightarrow \langle r^2 \rangle \longrightarrow W^{\Psi}$$

W_N: Semi-classical approach

$$W_{N} = \prod_{i} \hbar^{3} \delta(x_{i} - x_{i0}(t)) \delta(p_{i} - p_{i0}(t))$$

 \dots but no explicit description of W_N required (as it appears in the trace)

and (less trivial): generalisation at finite velocity; fully relativistic

Remler formalism at work

Combining the expression of the Wigner's functions and substituting in the effective rate equation :

$$\Gamma(t) = \sum_{i=1,2} \sum_{j \geq 3} \delta(t - t_{ij}(v)) \int \frac{d^3 p_i d^3 x_i}{h^3} W_{QQ}^{\Psi}(p_1, x_1; p_2, x_2) [W_N(t + \epsilon) - W_N(t - \epsilon)]$$

- The quarkonia production in our model is a three body process, the HQ (anti-quark) interact only by collision !!!
- The "details" of H_{int} between HQ and bulk partons are incorporated into the evolution of W_N after each collision / time step (nice feature for the MC simulation)
- $W_N(t+\epsilon)$ and $W_N(t-\epsilon)$ are NOT the equivalent of gain and loss terms in usual rate equation
- Dissociation and recombination treated in the same scheme

Then:
$$P^{\Psi}(t) = P^{\Psi}(t_{\text{init}}^{\Psi}) + \int_{t_{\text{init}}}^{\Psi} \Gamma(t) dt$$

Interaction of HQ with the QGP are carried out by EPOSHQ (good results for D and B mesons production)

NB: Also possible to generate similar relations for differential rates

Word of caution: Exploratory phase => not meant to have an exact comparison with exp. data

First answer to puzzle found in Song et al: the primordial production is killed rather fast by the « loss » rate.

6/16

Word of caution: Exploratory phase => not meant to have an exact comparison with exp. data

Effect of cham abundance in phase space (x2):

- Correct trends for charm recombination
- Absolute value too small

Exploring the effect of α in medium α Wigner distribution through the variation of the α parameter (spatial width):

Missing ingredient for quantitative agreement:

- temperature dependent $\sigma(T)$ in the Wigner function ?
- Interactions between Q & Qbar (real part of the potential, not implemented in EPOSHQ)
- ... ?

Despite quantitative undeprediction in the R_{AA} ... taking the most appropriate parameter:

Interesting feature: Within our approach, v₂ extends at rather large p_T

The Q-Qbar interaction

- Not implemented up to now in EPOSHQ
- More and more reliable calculations are becoming available for the real part of the potential, thanks to lattice calculations:

D. Lafferty and A. Rothkopf, PHYS. REV. D 101, 056010 (2020)

Go for it!

The Q-Qbar interaction: strategy 1

• "Minor problem" #1: Classical equations of motion are unstable (in the CM):

The Q-Qbar interaction: strategy 1

 "Major problem": slicing the global time evolution (usual strategy in MC) is not compatible with passing to c.m. frame for each individual pair...

Generic need to store / describe the trajectory of particle 2 at a time $t_{lab} > t_{lab}^2$ if ones propagates particle 1 up to t_{lab}^2 by resorting to evolution in the c.m.

The Q-Qbar interaction: strategy 2

- Describe dynamics through retarded interactions... calibrated to map to the static potential in the infinite mass static case... obviously several prescriptions available, need discussion with IQCD experts!
- Cures all problems encountered with strategy 1 © ... but (to my knowledge):
 No invariant associated with the retarded force (even without considering
 Abraham Lorentz force) => need specific methods to tame the instabilities

Stability achieved for a couple of cycles

Consequences on the charmonia in AA collisions

Although screened, the Q-Qbar interaction has important consequences on the probability to find a Q-Qbar at close distance in the final stage of the evolution

Consequences on the charmonia in AA collisions

Although screened, the Q-Qbar interaction has important consequences on the probability to find a J/ψ in the final stage of the evolution

Conclusions

- We have presented a model based on the probability density operator that allows to obtain the evolution of the effective rate of Quarkonia production in QGP.
- This scheme treats both the dissociation and the recombination consistently
- We have implemented a first version of the Q-Qbar interaction in the EPOSHQ scheme; effect on charmonia production seems to be large, even with a screened potential
- Some further developments are still nevertheless mandatory.

Further remark : first Semi-Classical simulation of multiple c-cbar pairs in QGP: C Young et E Shuryak Phys.Rev.C81:034905 (2010)

Back up

The usual detailed balance relation

No one to one correspondance of the gain & loss term!