

$\frac{\text{PURDUE}}{\text{UNIVERSITY}}$

Study charm hadronization via Λ_c^+ and D_s^+ production in pp and PbPb collisions with the CMS experiment

Milan Stojanovic Purdue University on behalf of the CMS collaboration

Hard Probes 2020, Austin TX, USA

- Heavy quarks produced at earliest stages of the collision
 - follow the whole evolution of the system
- Convenient for perturbative calculations
- Studying energy loss mechanism
 - different than light quarks
- Hadronization process
 - > $\Lambda_c^+(udc)$ essential for charm quark coalescence (baryon meson ratio)
 - \triangleright **D**⁺_s(cs) suitable for studying strangeness enhancement and coalescence

JHEP 04 (2018)108

◆ ALICE and LHCb results different for Λ⁺_c / D⁰ in pp collisions
 ▶ Different rapidity range?

JHEP 04 (2018)108

★ ALICE and LHCb results different for Λ_c^+ / D^0 in pp collisions
→ Different rapidity range?

PLB 793 (2019) 212

JHEP 04 (2018)108

Reconstruction

- Data from 2015 Run:
 - PbPb: 300M Minimum Bias events
 - pp: 2B Minimum Bias events
- ★ Λ⁺_c reconstruction
 ★ Λ⁺_c → P⁺K⁻π⁺
 ★ BR ~ 6.23%
- ★ D_s^+ reconstruction
 ★ $D_s^+ \rightarrow \varphi \pi^+ \rightarrow K^+ K^- \pi^+$ ★ BR ~ 2.3%

Reconstruction

- Data from 2015 Run:
 - PbPb: 300M Minimum Bias events
 - pp: 2B Minimum Bias events
- ★ Λ⁺_c reconstruction
 ★ Λ⁺_c → P⁺K⁻π⁺
 ★ BR ~ 6.23%
- ★ D_s⁺ reconstruction
 ★ D_s⁺ → φπ⁺ → K⁺K⁻π⁺
 ★ BR ~ 2.3%
- ✤ No particle identification → All possible combinations of three charged tracks in an event are taken into account

Reconstruction

- Data from 2015 Run:
 - PbPb: 300M Minimum Bias events
 - pp: 2B Minimum Bias events
- ★ Λ⁺_c reconstruction
 ★ Λ⁺_c → P⁺K⁻π⁺
 ★ BR ~ 6.23%
- ★ D_s^+ reconstruction ★ $D_s^+ \to \varphi \pi^+ \to K^+ K^- \pi^+$ ★ BR ~ 2.3%
- ✤ No particle identification → All possible combinations of three charged tracks in an event are taken into account
- ♦ Λ_c^+ measured inclusively, i.e. prompt+nonpropmpt
- Only prompt D_s^+ is measured

Signal Extraction Λ_c

Hard Probes 2020

 $\Lambda_{c}^{+} + \Lambda_{c}^{-}$

Signal Extraction D_s^+

Combinatorial background: 1st or 2nd order Chebyshev polynomial function

Signal: Double Gaussian

CMS-PAS-HIN-18-017

Signal Extraction D_s^+

Hard Probes 2020

Results: p_T spectra

PLB 803 (2020) 135328

- PYTHIA 8 systematically below data
- PYTHIA 8 + CR consistent with pp data
- GM-VFNS Systematically below data for p_T < 10 GeV/c

Results: p_T spectra

- PYTHIA 8 systematically below data
- PYTHIA 8 + CR consistent with pp data
- GM-VFNS Systematically below data for p_T < 10 GeV/c

- PYTHIA 8 overestimates data at low p_T
- ✤ At higher p_T prediction below data

Results: R_{AA}

- Indication of Λ_c^+ suppression in PbPb collision
- Suppression larger in central events

- Indication of Λ_c^+ suppression in PbPb collision
- Suppression larger in central events

Results: Λ_c/D_0

PLB 803 (2020) 135328

- Similarity between pp & PbPb results suggest that there is no significant coalescence of Λ⁺_c (10 < p_T < 20 GeV/c)
- ✤ No significant p_T dependence observed

Results: Λ_c/D_0

PLB 803 (2020) 135328

- Similarity between pp & PbPb results suggest that there is no significant coalescence of Λ⁺_c (10 < p_T < 20 GeV/c)
- ✤ No significant p_T dependence observed
- PYTHIA8 underestimates pp data
- PYTHIA8 + color reconnection good description of data
- Solid line (Catania) predicts stronger pT dependence
 - Coalescence + fragmentation
- Dashed line (TAMU) reasonable description of data for p_T < 10 GeV/c</p>
 - Includes charm baryon states beyond PDG

Results: D_s/D₀

CMS-PAS-HIN-18-017

- Ratio similar for PbPb and pp collisions
- ✤ No significant p_T dependence observed
- PYTHIA8 shape consistent with pp data
- PHSD systematically below pp&PbPb data, but gives a good description of double ratio (PbPb/pp)
 - Microscopic transport model w only collision energy loss
 - PRC 93 (2016) 034906
- TAMU consistent with pp data
 - Model includes charm baryon states beyond PDG
 - PLB 795 (2019) 117

Summary

- ↔ Production of Λ_c^+ and D_s^+ measured in pp & PbPb collisions
- Suppression of $\Lambda_c^+ \& D_s^+$ consistent with D^0 results in PbPb
- ✤ No significant coalescence of Λ_c^+ observed for 10 < p_T < 20 GeV/c
- Λ_c^+ in pp described well by PYTHIA 8 + CR
- ✤ TAMU describes D_s^+/D^0 ratio well in pp; $\frac{D_s^+/D^0(PbPb)}{D_s^+/D^0(pp)}$ described well by PHSD
- Possible additional constraints to theoretical models
- New analysis ongoing with increased statistics
 - ~13 times more PbPb data
 - ~ 6 times more pp data

Hard Probes 2020

Backup Slides

Λ_c uncertainty from nonprompt component

- The alternative estimation based on the FONLL calculation for the B hadron cross section
- The systematic uncertainty is taken as the difference between the nominal and alternative A e values.
 - ➢ pp: 18%
 - > PbPb: 29% (also considering the effect of $\frac{R_{AA}^{nonprompt}}{R_{AA}^{prompt}}$ correction.)
- The default PbPb $A\epsilon$:

• Considering
$$\frac{R_{AA}^{nonprompt}}{R_{AA}^{prompt}} = 1.66 \pm 0.38$$

- The nonprompt fraction passing the selection criteria:
 - > pp: 28-34% (PYTHIA CUETP8M1 tune)
 - ➤ 4-7% for the alternative method.