Nuclear modification and exclusive photoproduction of Upsilon in pPb collisions with the CMS experiment

Ruchi Chudasama
On behalf of CMS collaboration
Eötvös Loránd University

Hard Probes 2020

ruchi.chudasama@cern.ch

2nd June 2020
Motivation

Upsilon (ϒ) (Bound state of $b\bar{b}$)
- Produced in initial hard scattering of hadron collisions
- Probe of quark gluon plasma medium
- Sensitive to gluon PDFs

PbPb collision

Quarkonia yields modified cold nuclear matter + hot deconfined plasma.
Motivation

Upsilon (ϒ) (Bound state of $b\bar{b}$)
- Produced in initial hard scattering of hadron collisions
- Probe of quark gluon plasma medium
- Sensitive to gluon PDFs

Quarkonia yields modified cold nuclear matter + hot deconfined plasma.

Important to distinguish CNM effects and suppression due to QGP, studied in pPb collisions
Motivation

Upsilon (ϒ) (Bound state of $b\bar{b}$)
- Produced in initial hard scattering of hadron collisions
- Probe of quark gluon plasma medium
- Sensitive to gluon PDFs

PbPb collision

pPb collision

pp collision

Quarkonia yields modified cold nuclear matter + hot deconfined plasma.

Quarkonia yields modified Cold Nuclear Matter (CNM)

Baseline measurement

Important to distinguish CNM effects and suppression due to QGP, studied in pPb collisions
Upsilon (Υ) (Bound state of $b\bar{b}$)
- Produced in initial hard scattering of hadron collisions
- Probe of quark gluon plasma medium
- Sensitive to gluon PDFs

Quarkonia yields modified cold nuclear matter + hot deconfined plasma.

Quarkonia yields modified Cold Nuclear Matter (CNM)

Baseline measurement

Sensitive to nPDFs

Important to distinguish CNM effects and suppression due to QGP, studied in pPb collisions
Motivation

Cold nuclear matter effects:
- Energy loss
- Comover breakup
- Modification of nuclear parton distribution function (nPDF)

\[R = \frac{f_i/A}{A f_i/p} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}} \]
Cold nuclear matter effects:
- Initial state energy loss
- Comover breakup
- Modification of nuclear parton distribution function (nPDF)

\[R = \frac{f_i/A}{A f_i/p} \approx \text{measured} \frac{\text{expected if no nuclear effects}}{\text{measured}} \]

- Quarkonia in Ultraperipheral collisions (UPC) probes nuclear and nucleon PDF.
- UPC: No QGP, provides cleaner environment for nPDF
- **UPC (J/Ψ):** Results favor the Leading Twist Approximation (includes gluon shadowing) over the Impulse Approx. (ignores nuclear effects)
Upsilon reconstructed via dimuon decay.
Muon reconstruction: Silicon tracker + Muon sub-detectors
Outline

- Upsilon in pPb and pp collisions at 5.02 TeV
 CMS-HIN-PAS-18-005

- Upsilon in UPC pPb collisions at 5.02 TeV
Outline

- Upsilon in pPb and pp collisions at 5.02 TeV
 CMS-HIN-PAS-18-005
Quarkonia peaks modeled with Crystal Ball function

Background: error function \times exponential function
Nuclear modification factor

\[R_{\text{pPb}}(p_T, y_{\text{CM}}) = \frac{\langle d^2\sigma/dp_T dy_{\text{CM}} \rangle_{\text{pPb}}}{A \langle d^2\sigma/dp_T dy_{\text{CM}} \rangle_{\text{pp}}} \]

- Sequential suppression of the Y states across entire rapidity and \(p_T \) region
- Indicating modification by cold nuclear matter effects
• $\Upsilon(3S)$ state largely suppressed at low p_T in the Pb going side.
• Different amount of suppression for each Υ state, stronger for higher excited state
• Similarly observed in $\Psi(2S)$ at CMS
• Data compared with comover interaction model (CIM) + shadowing corrections (nCTEQ15 and EPS09NLO)
• Model predictions are in agreement with data within uncertainties.
• Suppression in order of binding energy
 \(R_{p\text{Pb}}(\Upsilon(1S)) > R_{p\text{Pb}}(\Upsilon(2S)) > R_{p\text{Pb}}(\Upsilon(3S)) \)

 \(\Upsilon(1S) \) \(R_{p\text{Pb}} = 0.773 \pm 0.023(\text{stat}) \pm 0.074(\text{syst}) \),
 \(\Upsilon(2S) \) \(R_{p\text{Pb}} = 0.673 \pm 0.039(\text{stat}) \pm 0.083(\text{syst}) \),
 \(\Upsilon(3S) \) \(R_{p\text{Pb}} = 0.514 \pm 0.056(\text{stat}) \pm 0.094(\text{syst}) \).

• Larger suppression in PbPb than in pPb
 \(R_{p\text{Pb}} > R_{AA} \)
\textbf{ϒ in UPC pPb collisions at 5.02 TeV}

- Photon with flux \(\alpha Z^2 \)
- Photon emitted by Pb interacts with p -> γp: dominant contribution
- Photon emitted by p interacts with Pb -> γPb: Small contribution
• Photoproduction α (gluon density)2

• Probe badly-known gluon distribution in proton at low x (10^{-4} to 2×10^{-2})

$$x = \left(\frac{m_Y}{W_{\gamma p}} \right)^2$$

• Centre-of-mass energy of the photon-proton system:

$$W_{\gamma p}^2 = 2 E_p m_Y \exp(\pm y)$$

• Measure exclusive vector meson x-section vs t, $t \sim p_T^2$

• Appearance of Diffractive dips are signature of gluon saturation according to b-CGC and IP-Sat model (exclusive ρ^0 production).

• First measurement of exclusive $\rho(770)^0$ in pPb UPC

UPC Trigger: at least 1 muon + number of tracks < 5

Upsilon selection in UPC:
Exactly 2 muons + No tracks or activity in Forward calorimeter $|\eta| < 5.2$

$p_T^{\mu} > 3.3$ GeV, $|\eta^{\mu}| < 2.2$

No additional activity in $|\eta| < 5.2$

$p_T^{\mu\mu} : 0.1-1$ GeV
UPC Trigger: at least 1 muon + number of tracks < 5

Upsilon selection in UPC:
Exactly 2 muons + No tracks or activity in Forward calorimeter $|\eta| < 5.2$

$\mu^+\mu^-$ mass (GeV)

Exclusive upsilon states observed for the first time in UPC pPb collisions.
Background processes:

CMS pPb 32.6 nb⁻¹ (5.02 TeV)

- Data
- γσ → Y(μ⁺μ⁻) signal (STARLIGHT)
- QED γγ → μ⁺μ⁻ bkg (STARLIGHT)
- Proton dissoc. μ⁺μ⁻ bkg (data)
- Incl. Y → μ⁺μ⁻ bkg (data)
- γPb → Y(μ⁺μ⁻) bkg (STARLIGHT)

Background processes:

Proton dissociation: Non-exclusive background
- Estimated from data by requiring activity in HF toward proton going side.
Background processes:

Proton dissociation: Non-exclusive background
- Estimated from data by requiring activity in HF toward proton going side.

QED (γγ → µ⁺ µ⁻): Non-resonant elastic background
- Estimated from STARLIGHT MC.

Upsilon from γPb: Small contribution
- Estimated from STARLIGHT MC.
\(\gamma \) photoproduction cross-section

- \(\frac{d\sigma}{dp_T^2} \) fitted with an exponential function
\[\exp(-|b|p_T^2) \]

- CMS Results: \(b = 6.0 \pm 2.1 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \text{ GeV}^{-2} \)

- ZEUS for \(\gamma(1S) \): \(b = 4.3^{+2.0}_{-1.3} \) (stat)

- Data is in agreement with ZEUS & pQCD predictions.

\[\chi^2 / \text{ndf} = 0.35 / 2 \]

\[\text{Constant} = 3.06 \pm 0.45 \]

\[\text{Slope} = -6.0 \pm 2.1 \]
\(\Upsilon \) photoproduction cross-section

- \(d\sigma/dp_T^2 \) fitted with an exponential function
 \[\exp(-|b|p_T^2) \]
- CMS Results: \(b = 6.0 \pm 2.1 \text{ (stat.)} \pm 0.3 \text{ (syst.)} \text{ GeV}^{-2} \)
- ZEUS for \(\Upsilon(1S) \): \(b = 4.3^{+2.0}_{-1.3} \text{ (stat)} \)
- Data is in agreement with ZEUS & pQCD predictions.

- Exclusive \(\Upsilon(1S) \) cross-section vs. rapidity is estimated
- Most theoretical predictions are consistent with data within large experimental uncertainties.

\[\chi^2 / \text{ndf} = 0.35 / 2 \]
Constant: \(3.06 \pm 0.45 \)
Slope: \(-6.0 \pm 2.1 \)

Data is in agreement with ZEUS & pQCD predictions.
• Exclusive $\Upsilon(1S)$ cross-section is estimated from the rapidity distribution of $\Upsilon(1S+2S+3S)$

$$\sigma_{\gamma p \rightarrow \Upsilon(1S)p} \left(W_{\gamma p}^2 \right) = \frac{1}{\phi} \frac{d\sigma_{\Upsilon(1S)}}{dy} , \quad \phi = \text{Photon flux}$$

• Power-law fit to CMS data $A \times (W_{\gamma p} / 400)^\delta$, $\delta = (1.08 \pm 0.42)$, $A = 690 \pm 184$

• Data compatible with power-law dependence of $\sigma(W_{\gamma p})$, disfavours steeper LO pQCD predictions.

• Evolution consistent with previous HERA/LHCb results
• Sequential suppression of upsilon states
 \[R_{pPb}(\Upsilon(1S)) > R_{pPb}(\Upsilon(2S)) > R_{pPb}(\Upsilon(3S)) \]

• Larger suppression in PbPb compared to pPb
 \[R_{pPb} > R_{AA} \]
• Sequential suppression of upsilon states
\[R_{p\text{Pb}} (\Upsilon(1S)) > R_{p\text{Pb}} (\Upsilon(2S)) > R_{p\text{Pb}} (\Upsilon(3S)) \]

• Larger suppression in PbPb compared to pPb
\[R_{p\text{Pb}} > R_{\text{AA}} \]

• First measurement of exclusive upsilon in pPb UPC.

• Studied previously unexplored kinematic region sensitive to gluon saturation in proton

CMS-PAS-HIN-18-005