DREENA framework as a multipurpose tool for QGP tomography

Dusan Zigic

in collaboration with: Magdalena Djordjevic, Jussi Auvinen, Igor Salom, Marko Djordjevic and Pasi Huovinen
DREENA framework

- **Dynamical Radiative and Elastic Energy loss Approach**

- fully optimized numerical procedure capable of generating high p_{\perp} predictions
- includes:
 - parton production
 - multi gluon-fluctuations
 - path-length fluctuations
 - fragmentation functions

- keeping all elements of the state-of-the art energy loss formalism, while introducing more complex temperature evolutions
version C - Constant temperature medium

- natural first step
- simplest calculation:
 analytical integration possible in certain cases
- all other version need to have const T limit
- exploring the influence of medium evolution on both light and heavy flavour and different observables

• Charged hadrons, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02$ TeV

for charged hadrons, qualitatively good agreement, but overestimation of v_2 data
DreonA-C

- D mesons, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02$ TeV

For D mesons, qualitatively good agreement, but again overestimation of v_2 data.
• B mesons, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02\, TeV$

for B mesons, our ν_2 predictions are non-zero
Main conclusions for DREENA-C:

- good agreement with R_{AA} data
- however, v_2 overestimates the data
- other models underestimate v_2 - v_2 puzzle
- overall good agreement with data given the simplicity of approximation

version B - 1D Bjorken evolution

- natural next step
- T introduced through analytical expression, which is only a function of time
- differences in results should suggest the sensitivity of observables to different aspects of medium evolution
- limits prove the validity of models

• Charged hadrons, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02$ TeV

very good joint agreement with both R_{AA} and v_2 data
DREENA-B

- D mesons, \(Pb + Pb \), \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)

[Graph showing data points and fits for different bin ranges, indicating good joint agreement for D mesons as well]
• B mesons, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02$ TeV

we predict non-zero v_2 for B mesons
• $Pb + Pb$, $\sqrt{s_{NN}} = 5.02$ TeV predictions for muons

好 agreement with the data
Main conclusions for DREENA-B:

- Takes medium evolution as a simple analytical expression that depends only on time.
- Explains high p_{\perp} data for different probes and centralities.
- This form of time evolution is suitable for studying the influence of initial stages of QGP evolution on high p_{\perp} observables.

- Yet, it can’t provide us with further information about the properties of QGP (shear viscosity, ...)

version A - Adaptive

- main goal of our research
- tool for exploiting high p_{\perp} data for QGP tomography by employing advanced medium model (hydro, transport coefficients,...)
- DREENA-A introduces full medium evolution but not at the expense of simplified energy loss
- also capable to account for event-by-event fluctuations
Glb-eBCFit, $\tau_0 = 1.0$ fm

used in Molnar-Holopainen-Huovinen-Niemi 3d hydro - energy density based on a third-order polynomial of the BC from optical Glauber

Charged hadrons

Very good agreement with R_{AA} and v_2 data!

For high-p_\perp data, proper description of parton-medium interactions is more important than the medium evolution!
QGP properties

- Next goal: inferring QGP properties from high p_{\perp} theory and data

- high energy particles lose energy
- energy loss sensitive to QGP properties
- predict the energy loss of high p_{\perp} probes
- infer QGP properties:
 - initial spatial anisotropy
 - constrain the initial stages by high p_{\perp} theory and data
 - path-length dependence of energy loss
Towards QGP tomography - DREENA-A

- Glb-eBC, $\tau_0 = 0.5$ fm
 - used in SONICv1.7 - energy density based on the BC density from optical Glauber

Charged hadrons

D mesons

B mesons
Towards precision QGP tomography - DREENA-A

- MCGLb-sMix, $\tau_0 = 0.6$ fm

used in **iEBE-VISHNU** - entropy density based on a mixture of wounded nucleon and BC densities from Monte Carlo Glauber

Charged hadrons

D mesons

B mesons
Towards precision QGP tomography - DREENA-A

Analized the sensitivity of high-p_\perp R_{AA} and ν_2 data to different hydro temperature profiles.

Obtained notable sensitivity shows that high-p_\perp theory/data can indeed be used to constrain the bulk QGP properties.

As a separate study, we also analized sensitivity of high-p_\perp R_{AA} and ν_2 data to different initial stages.

R_{AA} shows notable sensitivity to initial conditions, while ν_2 is surprisingly insensitive to these conditions.

High-p_\perp theory and data are suitable for QGP tomography, but both R_{AA} and ν_2 have to be tested simultaneously to infer the properties of this new form of matter!
Acknowledgements

Thank you for your attention!
Backup slides

- Charged hadrons, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02\ TeV$

DREENA-C & DREENA-B
Backup slides

- B Meson, $Pb + Pb$, $\sqrt{s_{NN}} = 5.02$ TeV

DREENA-C
• Charged hadrons, \(Pb + Pb, \sqrt{s_{NN}} = 5.02 \, TeV \)
DREENA-C & DREENA-B & DREENA-A