

Measurements of v_n at high-p_T and

correlation between v_n and mean- p_T in p+Pb collisions with the ATLAS detector

Tomasz Bold - AGH UST Cracow on behalf of the ATLAS Collaboration

Hard Probes 2020

v_n and mean p_T correlation

Eur. Phys. J. C 79 (2019) 985

The idea

- ullet Relate initial state quantity (event mean- $[p_{\mathrm{T}}]$) with evolution towards the final state (flow harmonics)
- Known that the correlation exists (ALICE Phys. Rev. C93, 034916)
- ullet Pearson correlation coefficient R distorted by the limited event multiplicity
- ullet A modified correlator ho proposed (P. Bozek, Phys. Rev. C93 044908)
 - ullet Replaces variances by dynamic counterparts ${
 m Var}_{
 m dyn}$, c_k
 - ullet Reproduces true R even with limited event multiplicity
 - → detector independent measurement
- Is the correlation present & positive or negative?
 Is it strong? Is it the same for all harmonics?
 Is it the same in Pb+Pb an p+Pb?

$$R = \frac{\text{cov}(v_n\{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n\{2\}^2)}\sqrt{\text{Var}([p_T])}},$$

$$\rho = \frac{\text{cov}(v_n\{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n\{2\}^2)_{\text{dyn}}\sqrt{c_k}}}.$$

$$\operatorname{Var}(v_n\{2\}^2)_{\operatorname{dyn}} = \langle \operatorname{corr}\{4\} \rangle - \langle \operatorname{corr}\{2\} \rangle^2$$

$$c_k = \left\langle \frac{1}{N_{\text{pair}}} \sum_{i} \sum_{j \neq i} (p_{T,i} - \langle [p_T] \rangle)(p_{T,j} - \langle [p_T] \rangle) \right\rangle$$

Details

$$\rho = \frac{\text{cov}(v_n\{2\}^2, [p_T])}{\sqrt{\text{Var}(v_n\{2\}^2)_{\text{dyn}}}\sqrt{c_k}}.$$

- Dataset: $\sqrt{s_{NN}} = 5.02 \ TeV$, 2015 $Pb+Pb\ 22\mu b^{-1}$, 2013 $p+Pb\ 28nb^{-1}$
- v_n{2}²
 [рт]
 v_n{2}²

 -2.5
 -0.75
 -0.5
 0.5
 0.75
 2.5
- Distinct sets of particles for $[p_T]$ and $v_n\{2\}^2$
- Rapidity gaps to suppress non-flow
- Analysis in narrow bins of multiplicity in forward regions
 - \bullet Mapped to $N_{\rm ch}(p_T < 0.5~GeV, |\eta| < 2.5)$ and $N_{\rm part}$
- Flow harmonics: v_2 , v_3 , v_4
- ullet Several $p_{
 m T}$ intervals: hydrodynamics region, energy loss region & region to test sensitivity to multiplicity change

Ingredients of the ρ for v_2 in Pb+Pb

Significant variation with centrality

Trend follows the v_2 magnitude

Negative in peripheral events!

 \rightarrow 0.5 < p_T < 5 GeV, $|\eta|$ < 2.5

Magnitude of v_2 fluctuations
Similar trend
to v_2 Different $p_{\rm T}$ ordering
as compared to cov

 c_k quantifies magnitude of $[p_{\mathrm{T}}]$ fluctuations

Nontrivial $p_{\rm T}$ interval ordering, different than for cov and ${\rm Var_{\rm dyn}}$

Correlation coefficient ρ for v_2

Negative correlation for v_2 in peripheral collisions

→ related to ecc. ~ 1/r

Gentle rise in mid central

→ stronger hydrodynamic response to initial eccentricities - interplay between radial and elliptic flow

Fall in most central events

Hydrodynamics 1+3D (Phys. Rev. C93 044908), reproduces the behaviour qualitatively

Also see comparison with IP-Glasma+hydro models: arxiv: 2004.00690

Ingredients of ρ for v_2 in p+Pb

Negative covariance, will determine sign of ρ

The ρ for v_2 in p+Pb vs Pb+Pb

The $[p_{\rm T}]$ fluctuations are of similar magnitude in p+Pb and peripheral Pb+Pb when matched $N_{\rm ch}$

The difference in the ρ values driven by the flow

The ρ for v_2 in $\rho+Pb$ vs Pb+Pb

The $[p_{\rm T}]$ fluctuations are of similar magnitude on p+Pb and peripheral Pb+Pb when matched $N_{\rm ch}$

The difference in the ρ values driven by the flow

The ρ for v_2 is negative in high multiplicity p+Pb collisions, for $N_{\rm ch} < 100$, compatible with Pb+Pb

No geometry driven trend observed in *p+Pb* compared to a clear effect in *Pb+Pb*

The ρ for v_2 in p+Pb vs Pb+Pb

The $[p_{\rm T}]$ fluctuations are of similar magnitude on p+Pb and peripheral Pb+Pb when matched $N_{\rm ch}$

The difference in the ρ values driven by the flow

The ρ for v_2 is negative in high multiplicity $\rho+Pb$ collisions, for $N_{\rm ch}<100$, compatible with Pb+Pb

No geometry driven trend observed in p+Pb compared to a clear effect in Pb+Pb

Favours small dimensions of the initial state —> higher pressure ([$p_{\rm T}$]), low eccentricity (v_2)

High p_T v_n in p+Pb

Eur. Phys. J. C 80 (2020) 73

The idea

- Low p_T behaviour of the flow signal in p+Pb collisions confirmed to be produced by hydrodynamical evolution of QGP, what about high p_T?
 - The mechanism is different jet energy loss sensitive to an average path in QGP medium
 - Yet jet-quenching not observed in p+Pb collisions!
 - And no spectra modification at high-p⁻!

Analysis procedure

- Inclusive & jet ($E_T > 75$ and $100 \; GeV$) triggered events
- Construct 2PC using ID tracks ($p_T > 0.4 \; GeV$):
 - Trigger (A) particles: inclusive or in jets
 - Associated (B) particles: $|\Delta \eta^{AB}| > 2$ - inclusive analysis away from any 15~GeV jet $|\Delta\eta^{\mathrm{jB}}| > 1$ - jet triggered sample
- ullet ATLAS peripheral templates fit to extract genuine flow signal $v_{n,n}$ and assuming factorisation v_n is obtained

Restriction of associated particles in jet events

Reduced statistics but improved fit quality: better S/B ratio

$v_n(p_T)$

- *V*₂
 - Both classes of events agree at low $p_T < 2.5 \; GeV$ hydrodynamics
 - Also agree at high $p_T > 10 \; GeV$
 - $v_2 \simeq 2.5 \%$ at high p_T
 - Transition region: sensitive to the mixture of "bulk" and "jet" particles
- *v*₃
 - ullet Similar behaviour as for v_2 lack of statistics precludes firms statement about high p_T

Comparison to models

Jet-quenching calculations (X. Zhang and J. Liao arXiv: 1311.5463)

- \rightarrow predict flow signal at high p_T yet,
- \rightarrow however, also predict strong suppression of high p_T hadrons,

A two component model (Romatschke arXiv: 1712.05815)

- ightharpoonup quantitatively describe v_2 at low p_T
- \rightarrow hint features at high p_T
- → yet well below observed values.

Centrality dependence

- ullet Measured v_2 independent of centrality at low & high p_T
- Transition region depends on mixture of bulk- and jet-particles

Conclusions

- ullet ATLAS measured correlations of v_n with event mean- p_{T} in Pb+Pb and p+Pb
 - Significant values for all harmonics in central Pb+Pb
 - For peripheral Pb+Pb collisions and p+Pb the ρ for v_2 correlation is negative and \sim compatible
 - Hydrodynamical simulations predicted such behaviour,
 useful insight into initial conditions in p+Pb
- ullet ATLAS measured flow coefficients at high p_T in $p\!+\!Pb$
 - \bullet Found significant values for v_2 , same in inclusive and jet enhanced sample
 - Theoretical models can describe this particular behaviour yet not a complete picture