Kinetic and Chemical Equilibration of QGP

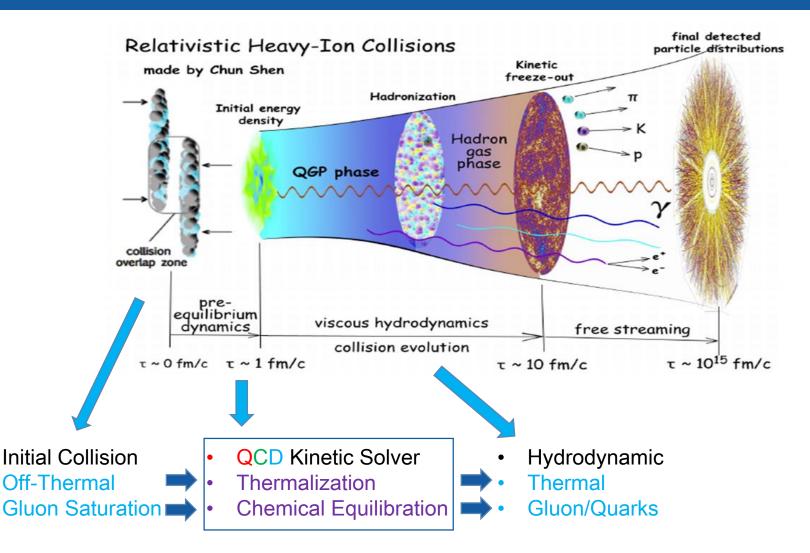
Xiaojian Du, Sören Schlichting

Department of Physics Bielefeld University

Hard Probes 2020, Austin, TX, USA 06/03/2020

CRC-TR 211 Strong-interaction matter under extreme conditions

Kinetic and Chemical Equilibration



QCD Kinetic Solver

Based on Effective Kinetic Theory (AMY) of QCD at LO

$$\left(\frac{\partial}{\partial t} - \frac{p_{\parallel}}{t}\frac{\partial}{\partial p_{\parallel}}\right)f_s(\vec{p}, t) = -C_s^{2\leftrightarrow 2}[f](\vec{p}, t) - C_s^{1\leftrightarrow 2}[f](\vec{p}, t)$$

AMY,JHEP01 (2003) 030 AMY,JHEP0206(2002)030 Kurkela, Mazeliauskas,PRD99 (2019) 054018

$$s = g, u, \bar{u}, d, d, s, \bar{s}$$

Explicitly solve Boltzmann equation for gluon and 3 light quarks/anti-quarks as an integro-differential equation including 2-2 elastic processes and 1-2 inelastic processes

- Evolution of phase space density for discretized momenta for spatially homogenous QGP
- Exact conservation of particle number (elastic) and energy (elastic + inelastic)
 - Based on weight function algorithm Ab

Abraao York, Kurkela, Lu, Moore, PRD89(2014)074036 E Lu, PhD Thesis

Scale invariant evolution with massless QCD particles in current QCD Kinetic Solver

Elastic Collisions

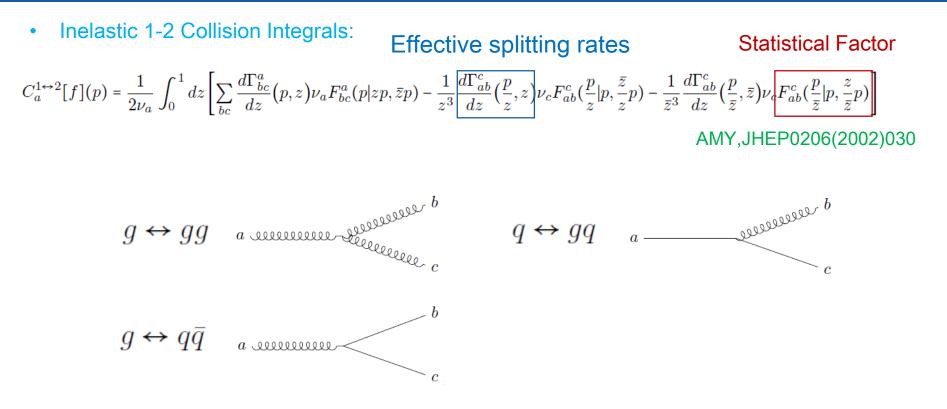
Elastic 2-2 Collision Integrals: pQCD amplitudes Statistical Factor AMY, JHEP01 (2003) 030 $C_a^{2\leftrightarrow 2}[f](\vec{p}_1) = \frac{1}{2\nu_a} \frac{1}{2E_{p_1}} \sum_{cd} \int d\Pi_{2\leftrightarrow 2} |\mathcal{M}_{cd}^{ab}(\vec{p}_1, \vec{p}_2 | \vec{p}_3, \vec{p}_4)|^2 F_{cd}^{ab}(\vec{p}_1, \vec{p}_2 | \vec{p}_3, \vec{p}_4)|^2$ $gg \leftrightarrow gg$ Screening masses match to HTL $qg \leftrightarrow qg, \, \bar{q}g \leftrightarrow \bar{q}g$ calculations Kurkela, Mazeliauskas, PRD99 (2019) 054018 $q\bar{q} \leftrightarrow gg$ g \bar{q} $q_1\bar{q}_1 \leftrightarrow q_2\bar{q}_2$ $qq \leftrightarrow qq, \ \bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}$

q q

 $\begin{array}{l} q_1 q_2 \leftrightarrow q_1 q_2, \; q_1 \bar{q}_2 \leftrightarrow q_1 \bar{q}_2, \\ \bar{q}_1 q_2 \leftrightarrow \bar{q}_1 q_2, \; \bar{q}_1 \bar{q}_2 \leftrightarrow \bar{q}_1 \bar{q}_2 \end{array}$

 $q_{1}q_{1} \leftrightarrow q_{2}q_{2}$ $\bar{q}_{1} \qquad \bar{q}_{2}$ $\bar{q}_{1} \qquad \bar{q}_{2}$ $\bar{q}_{2} \qquad \bar{q}_{2}$

Inelastic Collisions



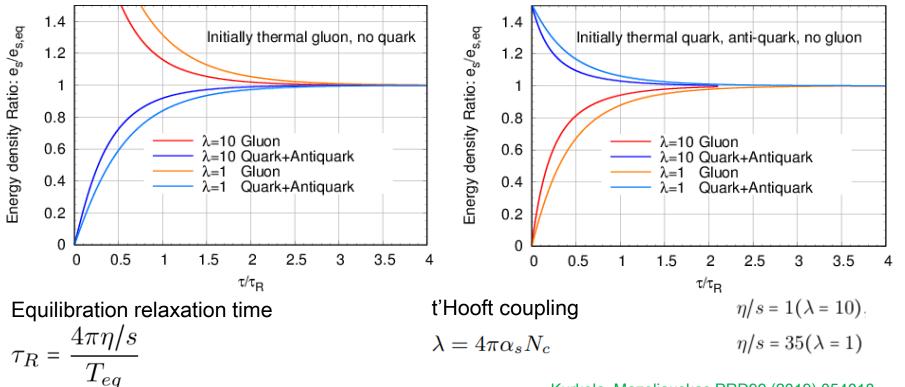
Effective in-medium splitting rates accounting for LPM effect, via vertex resummation (AMY)

Kinetic and Chemical Equilibration without Long. Expansion

Gluon and Quark Chemical Equilibration

System initially in kinetic equilibrium but not in chemical equilibrium

Initially thermal gluon only, no quark



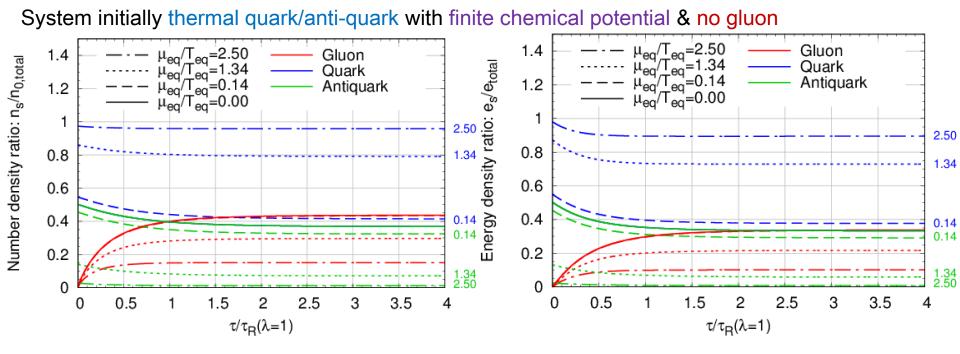
controls kinetic equilibration/hydrodynamization

Kurkela, Mazeliauskas, PRD99 (2019) 054018 KOMPOST, PRC99 (2019) 034910

Initially thermal quark, anti-quark only, no gluon

• Chemical equilibration controlled by the same time scale as kinetic equilibration: $1.5 \sim 2.0 t_R$

Chemical Equilibration at Finite Density

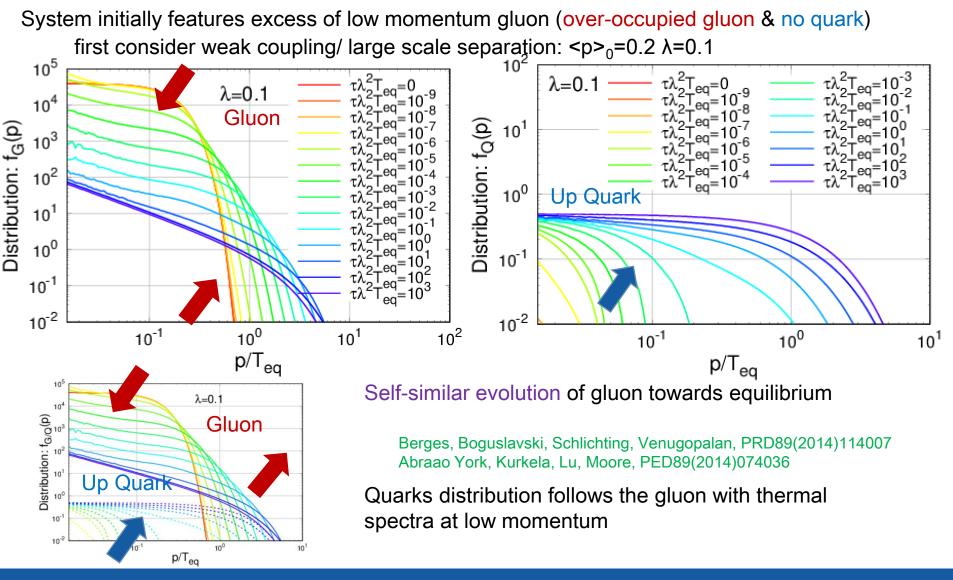


Scaling of Relaxation time as $\mu = 0$

$$\tau_R(T,\mu) = \frac{4\pi}{T_{eq}} \left(\frac{\eta(T,\mu)T}{e+p} \right) \sim \frac{4\pi}{T_{eq}} \left(\frac{\eta(T,\mu)T}{e+p} \right)_{eq} \sim \frac{4\pi}{T_{eq}} \left(\frac{\eta(T_{eq},\mu=0)}{s} \right)$$

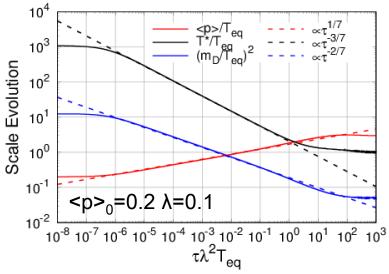
- 1. Quark anti-quark quickly radiates gluon
- 2. Quark anti-quark annihilation follows
- 3. Chemical equilibration occurs on the same time scale for zero and finite charge density

Over-Occupied System: Spectra Evolution



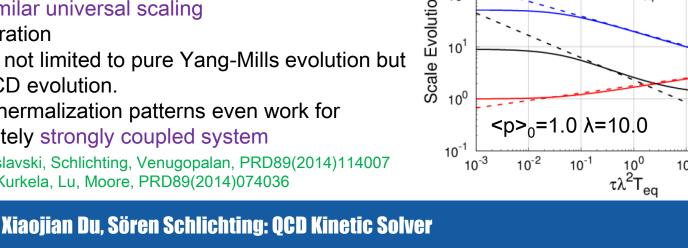
Over-Occupied System: Self-Similarity

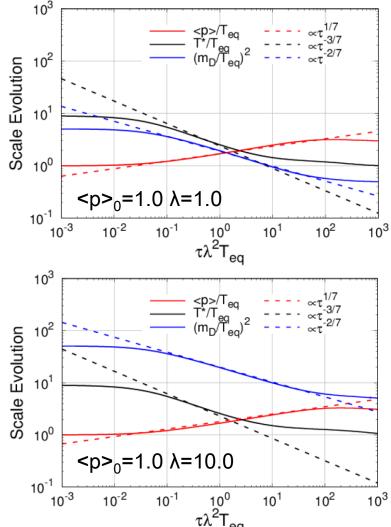
System initially features excess of low momentum gluon (over-occupied gluon & no quark)



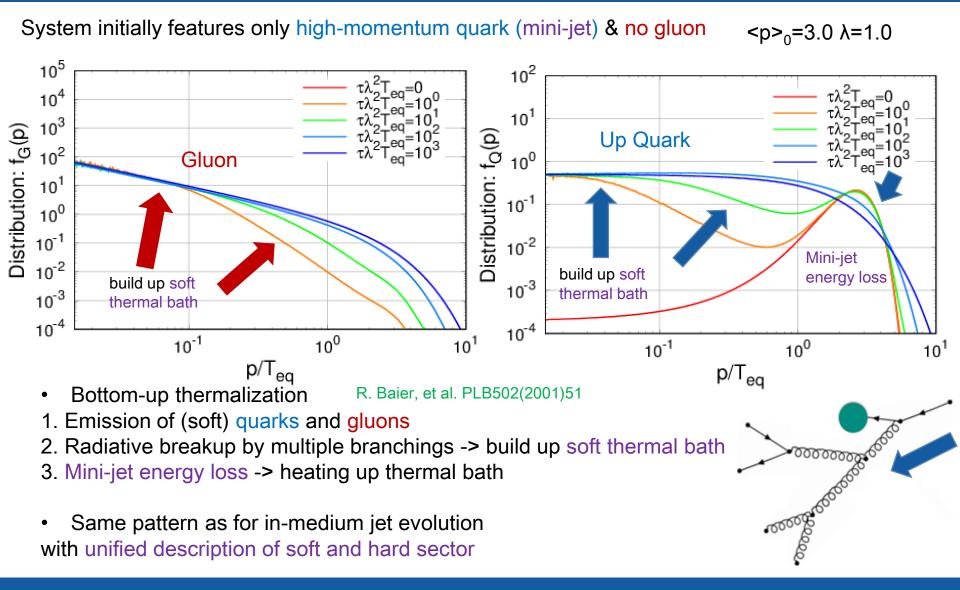
- Different distinct stages :
- Initial memory loss 1.
- Self-similar universal scaling 2.
- 3. Equilibration
- Scaling not limited to pure Yang-Mills evolution but also QCD evolution.
- Same thermalization patterns even work for moderately strongly coupled system

Berges, Boguslavski, Schlichting, Venugopalan, PRD89(2014)114007 Abraao York, Kurkela, Lu, Moore, PRD89(2014)074036



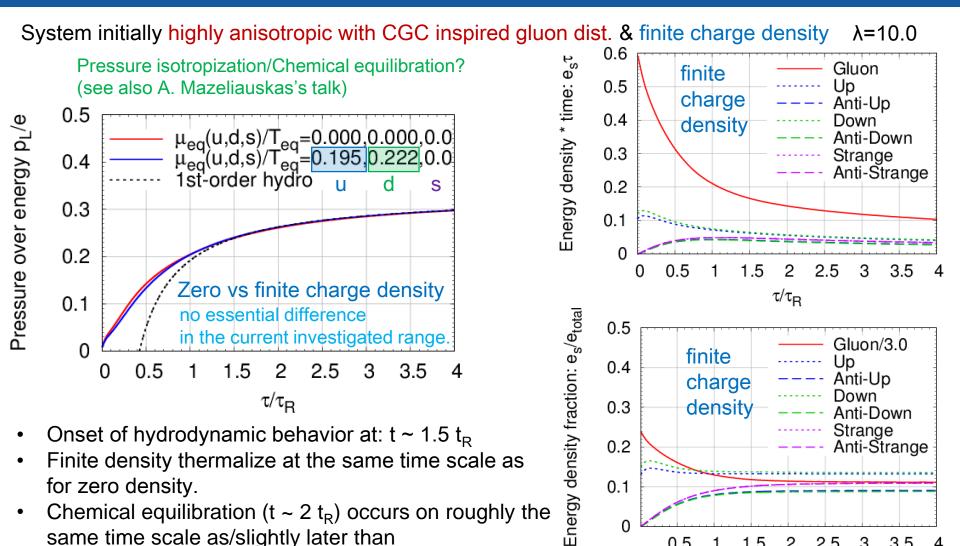


Under-Occupied System: Spectra Evolution



Kinetic and Chemical Equilibration with Long. Expansion

Expansion System with Finite Density



0

0.5

1

1.5

2

 $\tau/\tau_{\rm R}$

2.5

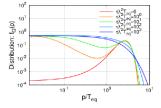
3

3.5

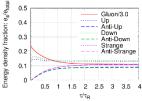
Chemical equilibration (t ~ 2 t_R) occurs on roughly the same time scale as/slightly later than hydrodynamization (t ~ $1.5 t_{R}$)

Conclusions And Outlook

- Generally the nonequilibrium evolution for 3-flavor QCD is similar to pure Yang-Mills
 - Over-occupied system follows a self-similar universal scaling, even for moderately strongly coupled system
 - Under-occupied system follows a bottom-up thermalization



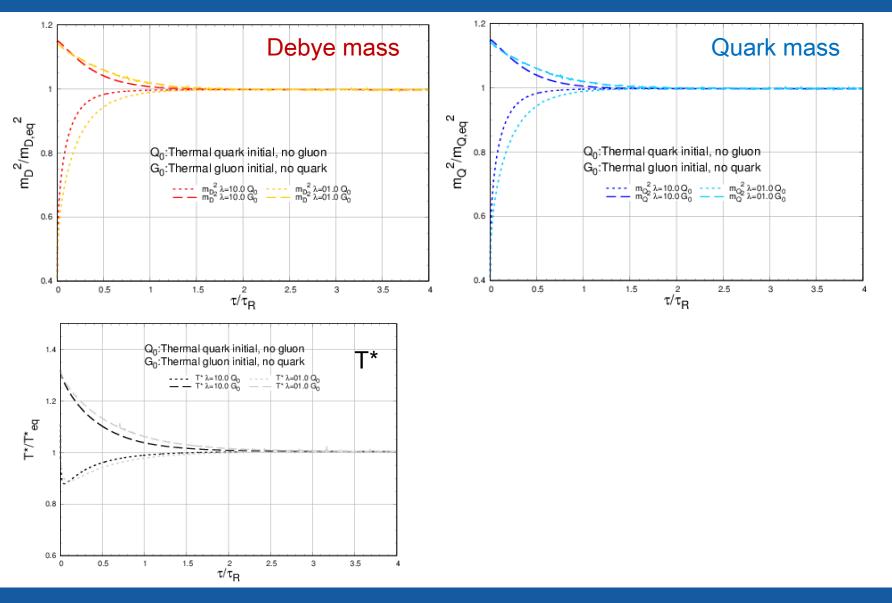
- Chemical and kinetic equilibration for expanding QGP occurs on roughly the same
 - time scale as for zero and finite charge density.
 - No significant changes in pressure equilibration for finite density compared to zero density
 - Detailed study of finite density in progress...
- Embrace the future: About QCD Kinetic Solver
 - Have all species of light particles in QCD, allowing finite density calculation, capable of realistic matching to hydro (KoMPoST)
 - Highly extensible machinery for including more particles (heavy quarks, ...)
 - Capable of a universal description of soft and hard sectors for jet energy loss



Backup: Thermodynamic Quantities

$$\begin{split} m_D^2 &= \frac{4g^2}{d_A} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2p} \bigg[\nu_G C_A f_G(p,T) + \sum_{Q=u,d,s} \nu_Q C_F \left(f_Q(p,T,\mu_Q) + f_Q(p,T,\mu_Q) \right) \bigg] \\ m_Q^2 &= g^2 C_F \int \frac{d^3p}{(2\pi)^3} \frac{1}{2p} \Big[2f_G(p,T) + \left(f_Q(p,T,\mu_Q) + f_Q(p,T,\mu_Q) \right) \Big] \\ T^* &= \frac{g^2}{d_A m_D^2} \int \frac{d^3p}{(2\pi)^3} \bigg[\nu_G C_A f_G(p,T) (1 + f_G(p,T)) + \sum_{Q=u,d,s} \nu_Q C_F \left(f_Q(p,T,\mu_Q) (1 - f_Q(p,T,\mu_Q)) + (\bar{Q}) \right) \bigg] \stackrel{\text{cg}}{=} T \\ e_G^{\text{eq}} &= \int \frac{d^3p}{(2\pi)^3} p f_G^{\text{eq}}(p,T) = \frac{\pi^2}{30} T^4 \\ e_Q^{\text{eq}}(p,T,\mu) &= \int \frac{d^3p}{(2\pi)^3} p f_Q^{\text{eq}}(p,T,\mu) = -\frac{3T^4 Li_4 (-e^{\mu/T})}{\pi^2} \stackrel{\mu=0}{=} \frac{7\pi^2}{240} T^4 \\ n_G^{\text{eq}} &= \int \frac{d^3p}{(2\pi)^3} f_G^{\text{eq}}(p,T) = \frac{\zeta(3)}{\pi^2} T^3 \\ n_Q^{\text{eq}}(p,T,\mu) &= \int \frac{d^3p}{(2\pi)^3} f_Q^{\text{eq}}(p,T,\mu) = -\frac{T^3 Li_3 (-e^{\mu/T})}{\pi^2} \stackrel{\mu=0}{=} \frac{3\zeta(3)}{4\pi^2} T^3 \\ n_Q^{\text{eq}}(p,T,\mu) &= \int \frac{d^3p}{(2\pi)^3} f_Q^{\text{eq}}(p,T,\mu) = -\frac{T^3 Li_3 (-e^{-\mu/T})}{\pi^2} \stackrel{\mu=0}{=} \frac{3\zeta(3)}{4\pi^2} T^3 \end{split}$$

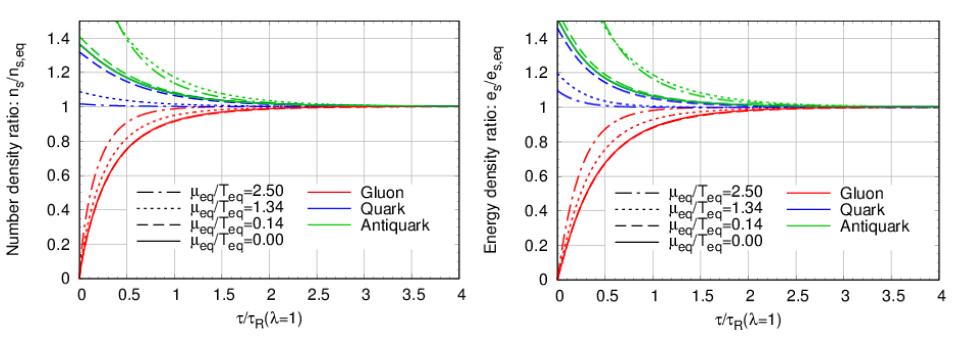
Backup: Kinetic Equilibration Scale Evoluion



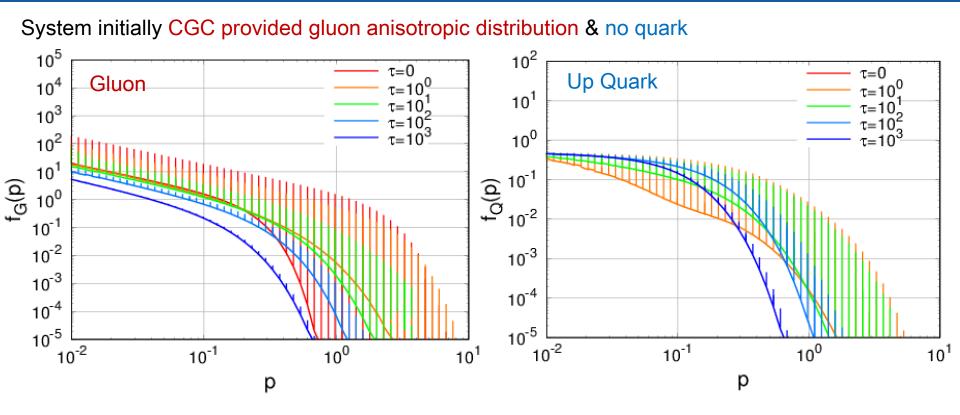
Xiaojian Du, Sören Schlichting: QCD Kinetic Solver

Backup: Finite Density Equilibration

Assuming initially thermal quark/anti-quark with finite chemical potential & no gluon



Backup: Anisotropy



1. Quick elimination of anisotropy

2. Thermalization