IMPORTANCE OF MULTIPLICITY FLUCTUATIONS IN ENTROPY SCALING

Patrick Carzon (pcarzon2@illinois.edu)
Matthew Sievert, Jacquelyn Noronha-Hostler
US-DOE Nuclear Science Grant No. de-sc0019175
Initial Conditions and Small Systems

Shear viscosity is dependent on choice of initial condition.

\[\frac{\eta}{s} \text{ depends on IC: M. Luzum and P. Romatschke, [arXiv:0901.4588 [nucl-th]]} \]
Functional Form of Initial Entropy Density

Scaling Relation:

\[f_p(cT_A, cT_B) = cf(T_A, T_B) \]

Model Agnostic Generalized Mean:

\[f_p(T_A, T_B) = \left(\frac{T_A^p + T_B^p}{2} \right)^{\frac{1}{p}} \]

From Bayesian Analysis (\(p = 0 \)):

\[\sqrt{T_A T_B} \]

TRENTO used ultra-central U+U collisions to exclude entropy scaling models from their analysis

Linear Functional Form

$$\sqrt{T_AT_B} \in f_p$$

Initial Energy Density in CGC:

$$T_AT_B \notin f_p$$

While TRENTO can reproduce UU well, there are other models that can do so that were not considered in the Bayesian analysis.

Initial Energy Density in CGC:

$$T_AT_B \notin f_p$$

While TRENTO can reproduce UU well, there are other models that can do so that were not considered in the Bayesian analysis.

Using another functional form needed Lognormal multiplicity fluctuations

Multiplicility Distributions

\[T_{A,B}(x,y) = w_{A,B} \int dz \rho_{A,B}(x,y,z) \]

\[P_k(w) = \frac{k^k}{\Gamma(k)} w^{k-1} e^{-kw} \]

\[P_k(w) = \frac{2}{wk\sqrt{2\pi}} e^{-\frac{\log^2(w^2)}{2k^2}} \]

Updates to TRENTO: I added \(T_A T_B\) scaling and Lognormal Fluctuations
\[\sqrt{T_A T_B} \] needs more fluctuations to reproduce data than \(T_A T_B \) which matches data with no fluctuations.

\[N_{ch} \propto S_0 \]
Multiplicity: Lognormal fluctuations

$\sqrt{T_AT_B}$ plays well with Γ but not Lognormal.

$\sqrt{T_AT_B}$ smooths out entropy more than T_AT_B meaning it needs more fluctuations.
Eccentricities

Different ϵ_n affect the extraction of η/s from ν_n

4 Particle Cumulants

Plotting $\frac{\epsilon_n\{4\}}{\epsilon_n\{2\}}$ to see the event by event fluctuations

Using absolute value of $\epsilon_n\{4\}$ to portray negative values rather than leave them imaginary

Small systems have both linear and non-linear results so hydro simulations will give a more accurate description of $\frac{v_2\{4\}}{v_2\{2\}}$

AuAu
Effect is decreased in larger systems
Multiplicity: Lognormal Fluctuations

LogNorm Fluctuations $\sqrt{T_A T_B}$

AuAu @ 200GeV

Best Fit: $k=1$

Best Fit: $k=0.1$
Eccentricities

$T_A T_B$ gives a larger $\epsilon_3\{2\}$ than $\sqrt{T_A T_B}$, but they are the same in $\epsilon_2\{2\}$
If error bars of $\frac{\varepsilon_2\{4\}}{\varepsilon_2\{2\}}$ data can be decreased by factor of 2 then the two models can be distinguished from each other.
Conclusion

- Choice of functional form and multiplicity fluctuations can have an effect on extracted viscosity
- The effect on extracted viscosity is greater for small systems and less for large systems
- ϵ_2^2 is good for distinguishing models

Future

- Both functional forms are symmetric, IP-JASMA used an asymmetric form with lognormal fluctuations
- Test sampling directly from the gluon spectrum
- Quantify the amount of an effect this would have on extracted viscosity