Evidence of top quark production in nucleus-nucleus collisions <u>CMS PAS HIN-19-001</u>

tella

G.K. Krintiras (cern.ch/gkrintir) on behalf of the CMS Collaboration The University of Kansas Hard Probes 2020

Top quark studies @ LHC: 4 √snn & 2 systems!

- Top quark is multifaceted
- **a** A wealth of top pair $(t\bar{t})$ production measurements
 - At 5, 7, 8, and 13 TeV
 - In pp and **pPb** collisions
- So far elusive in nucleus-nucleus collisions
 - Initial state
 - To probe nuclear PDFs at high (x, Q^2) values
 - Final state
 - Novel tool for parton energy loss

Measurement of tī cross section: general approach 3

- Choose the cleanest final states
 - dileptons (+jets): ee, $\mu\mu$, and $e\mu$
- Define the "visible" phase space
 - Kinematic requirements on physics objects
 - Split in bins of (b) jet multiplicity
- Apply MVA techniques on
 - b tagging and signal extraction
 - optimized in 1/3 of the available data ("blind" approach)
- Perform likelihood fits to distributions
 - The cross section (σ) is extracted

The first search for tt using PbPb collisions

- Dilepton final states have the best S/B but what about the event count?
 - perturbative QCD cross section (3.2 μ b) × luminosity (1.7 /nb in 2018): O(100) candidate events

[Phys. Lett. B 746 (2015) 64]

accounting for signal acceptance and detection efficiency

The first search for tt using PbPb collisions

- **Dilepton final states have a distinct event signature**
 - Leptons are of high **p**_T, isolated, and opposite charge
 - Main background from prompt (e.g., Z/γ^*) or nonprompt leptons

The signal and bkg modeling

☑ NN (N=p,n) \rightarrow tt, bkg processes at **next-to-leading order** (NLO) in pQCD

- EPPS16 nPDFs, embedded to HYDJET
- Nonprompt (e.g., QCD multijet, W+jets) bkg from event mixing

The predictions are scaled to luminosity!

Optimizing the traction with lepton-only MVA 7

- **Z** Boosted Decision Trees (BDTs): kinematics from the two leading- p_T leptons
 - Easy to calibrate and robust against QGP effects
- Bkg and tt signal populate low- and high-BDT scores, respectively

The cross-flavor final state the most sensitive, as expected!

Measuring the tt cross section with leptons only

- The cross section is measured 2.56 \pm 0.69 (stat) \pm 0.43 (exp) \pm 0.13 (theo) μ b
 - The statistical uncertainty is dominant
- **a** Total number of signal events from all three final states: **43**
 - compatible with that we initially expected

The first evidence of top quarks in PbPb!

Including the information from jets

- **Enriching** the final-state topology with the **b** jet info: phase space regions with different signal purity
 - Jets (anti- k_T , 0.4) are also of high p_T with falling η distribution
 - An optimized algorithm successfully tags 60–70% of the b jets

The signal and bkg b jet multiplicity

- We count the number of events in the three final states with 0, 1, and 2 b-tagged jets
 - selecting the jets with the **highest** b tagging score
- Additional systematic uncertainties well under control
 - Experimental (b-tagging efficiency, JES/JER) ⊕ jet quenching parametrization uncertainty in signal

Measuring the tt cross section with leptons+b-tags 11

- **We** extracted σ with a similar precision relative to the lepton-only measurement
 - compatible with each other

Measuring the tt cross section with leptons+b-tags 12

- **We** extracted σ with a similar precision relative to the lepton-only measurement
 - compatible with each other
- \blacksquare b tagging is a powerful tool to flag tt production
 - tt provides a **pure** sample of b jets throughout the QGP evolution

£ =1.7±0.1 /nb

Up-to-date compilation: 4 🗸 snn & 3 systems @ LHC!

- **Experimental evidence** of the top quark in **nucleus-nucleus** collisions
 - using either leptons only or leptons+b jets
- It establishes a **new tool** for probing nPDFs as well as the QGP properties

DOE DE-SC0019389

The significance of the lepton-only measurement

- **a** Basic ingredients: **acceptance** (\mathcal{A}), **efficiency** (ε), and **total** (stat \oplus syst) unc
 - \mathcal{A} at NLO; ε from MC with data-driven correction
- \square The bkg-only hypothesis is excluded at 3.8σ

The first evidence of top quarks in PbPb!

The significance of the leptons+b-tags measurement

- **We fit the lepton-only BDT classifier simultaneously** at all three final states
 - correlating the number of events with 0, 1, and 2 b-tagged jets
 - This boosted our **expected** significance > 5σ
- **Z** The bkg-only hypothesis excluded at a similar level, i.e., 4σ

Increased sensitivity by adding jets

Splitting uncertainty in a stat & syst component

- **D** There is no unique method
 - stat: fix nuisances to post-fit values and refit with floating σ_{tt}
 - syst: fix nuisances once at a time to post-fit unc and refit with

Table 2: Observed impact of each source of uncertainty in the signal strength μ , for the leptoniconly and leptonic+b-tagged analyses. The total uncertainty is obtained from the covariance matrix of the fits. The values quoted are symmetrized.

Sourco	$\Delta\mu/\mu$			
Source	leptonic-only	leptonic+b-tagged		
Total statistical uncertainty	0.27	0.28		
-				
Total systematic experimental uncertainty	0.17	0.19		
Background normalization	0.12	0.12		
Background and tt signal distribution	0.07	0.08		
Lepton selection efficiency	0.06	0.06		
Jet energy scale and resolution	—	0.02		
b tagging efficiency	_	0.06		
Integrated luminosity	0.05	0.05		
Total theoretical uncertainty	0.05	0.05		
nPDF, $\mu_{ m R}$, $\mu_{ m F}$ scales, and $lpha_S(m_Z)$	< 0.01	< 0.01		
Top quark and Z boson $p_{\rm T}$ modeling	0.05	0.05		
Top quark mass	< 0.01	< 0.01		
Total uncertainty	0.32	0.34		

Impacts (observed)

Impacts and post-fit nuisance values obtained after the leptonic-only (left) and the leptonic+b-tagged (right) fits. Only the 15 leading nuisance parameters are shown.

Table 3: Signal strength μ and significance in standard deviations including only the $e^{\pm}\mu^{\mp}$ channel in the fit and compared to the e^+e^- , $\mu^+\mu^-$, and $e^{\pm}\mu^{\mp}$ measurements. The observed (expected) results of the fits are reported.

Fit alternative	Signal strength μ	Significance
$e^{\pm}\mu^{\mp}$ (leptonic only)	$0.66^{+0.24}_{-0.22} \ (1.00^{+0.27}_{-0.25})$	3.3 (4.7)
$\mathrm{e^+e^-}$, $\mu^+\mu^-$, and $\mathrm{e^\pm}\mu^\mp$ (leptonic only)	$0.81^{+0.26}_{-0.23} \ (1.00^{+0.26}_{-0.23})$	3.8 (4.8)
$e^{\pm}\mu^{\mp}$ (leptonic+b-tagged)	$0.61^{+0.23}_{-0.20} \ (1.00^{+0.26}_{-0.23})$	3.8 (5.3)
e^+e^- , $\mu^+\mu^-$, and $e^\pm\mu^\mp$ (leptonic+b-tagged)	$0.64^{+0.22}_{-0.20} \ (1.00^{+0.24}_{-0.21})$	4.0 (6.0)

Event yields

Table 1: Number of expected background and signal events, and observed event yields in the e^+e^- , $\mu^+\mu^-$, and $e^\pm\mu^\mp$ event categories for the three b jet multiplicities (0b, 1b, 2b) after all selection criteria and the signal extraction fit.

T. 1 . .

				F	inal state				
Process	e^+e^-				$\mu^+\mu^-$	$\mathrm{e}^{\pm}\mu^{\mp}$			
	0b	1b	2b	0b	1b	2b	0b	1b	2b
Z/γ^*	$389.8 {\pm} 15.4$	$40.4{\pm}2.7$	$4.4{\pm}0.8$	1027.5 ± 27.3	136.1 ± 5.7	$14.1 {\pm} 1.7$	35.1 ± 1.7	$4.4{\pm}0.9$	$0.7{\pm}0.2$
Nonprompt	17.3 ± 2.2	$1.4{\pm}0.2$	≤ 0.1	$7.6{\pm}1.0$	$0.8{\pm}0.1$	≤ 0.1	17.1 ± 1.9	$4.0{\pm}0.4$	≤ 0.1
tW	$1.1 {\pm} 0.2$	$0.9{\pm}0.2$	≤ 0.1	$1.8{\pm}0.4$	$1.3 {\pm} 0.3$	$0.2{\pm}0.1$	$3.4{\pm}0.7$	$2.5 {\pm} 0.5$	$0.4{\pm}0.1$
VV	$1.9{\pm}0.3$	$0.2{\pm}0.1$	≤ 0.1	$3.3{\pm}0.6$	$0.4{\pm}0.1$	≤ 0.1	$5.4{\pm}0.9$	$0.6{\pm}0.1$	≤ 0.1
Total background	$410.2 {\pm} 15.1$	$42.8{\pm}2.7$	$4.5{\pm}0.8$	$1040.2{\pm}27.1$	$138.6 {\pm} 5.7$	$14.4{\pm}1.8$	$61.1 {\pm} 2.9$	11.5 ± 1.3	$1.1{\pm}0.2$
-									
t ī signal	$2.8{\pm}0.8$	$3.2{\pm}0.8$	$1.3{\pm}0.4$	$4.5 {\pm} 1.2$	5.1 ± 1.2	$1.9{\pm}0.6$	$9.7{\pm}2.5$	$10.7{\pm}2.4$	$4.0{\pm}1.2$
Observed (data)	410	48	9	1064	139	8	70	14	6

Signal separation: measuring tī with leptons only

- **\square** Use the kinematics of the two leading- p_T leptons to train a BDT
 - $p_{\rm T}(\ell_1)$, the $p_{\rm T}$ of the highest- $p_{\rm T}$ lepton,
 - $A_{p_{\rm T}}$, the asymmetry in the lepton- $p_{\rm T}$'s, namely $\frac{p_{\rm T}(\ell_1) p_{\rm T}(\ell_2)}{p_{\rm T}(\ell_1) + p_{\rm T}(\ell_2)}$,
 - $p_{\rm T}(\ell \ell)$, the $p_{\rm T}$ of the dilepton system,
 - $|\eta(\ell \ell)|$, the absolute η of the dilepton system,
 - $|\Delta \phi(\ell \ell)|$, the absolute value of the separation in ϕ of the two leptons, and
 - $\Sigma |\eta_i|$, the sum of the absolute η 's of the leptons.

Dilepton sphericity: prefit (left) and postfit (right)

GEN and RECO level b jet distributions

Distributions for the two reconstructed jets with highest b-tag discriminator value in tt and DY simulations. The generator level transverse momentum is shown on the top, while the b-tag discriminator is shown on the bottom. The left (right) distributions correspond to the best (second-best) ranked jet in the b-tag discriminator.

Fit procedure

- A profile likelihood method is used to extract the signal strength
- Systematic uncertainties are encoded as nuisance parameters
 - Log-normal for rate-related or Gaussian nuisances for shapes
- Experimental
 - Luminosity
 - centrality/ $p_{T/\eta}$ -dependent trigger/ID/isolation scale factors
 - Nonprompt normalization based on same-sign data counts
 - Shape statistical uncertainties (Barlow-Beeston)
- **D** Theory
 - Nuclear PDFs/QCD scales
 - Top p_T based on pp prescription
 - ∆mt=±1 GeV
 - $Z p_T$ modeling based on data/MC uncertainty

Identification of heavy-flavour jets

Table 1: Input variables used for the Run 1 version of the CSV algorithm and for the CSVv2 algorithm. The symbol "x" ("—") means that the variable is (not) used in the algorithm

Run 1 CSV	CSVv	2
x	x	
—	X	
x	X	
x	x	
x	x	
х	х	a second
	x	jet tracks charged
x	x	heavy-flavour
	x	sv jet
	х	10110000
	x	PV
	x	Jet
	x	UNCT 12 (2019) D05011
—	x	JINST 13 (2018) P03011
_	x	
	x	
_	x	
_	x	
_	х	
	Run 1 CSV x x x x x x 	Run 1 CSV CSVv x x $$ x $$ $$

Surpassing the baseline luminosity goals

- **Z** LHC collided more types of beam, than originally foreseen, with better performance
 - In practice, we've come close to the "HL-LHC" performance with PbPb and pPb collisions
- In 2018 the peak luminosity at IP1/5 reached ×6 the design without magnet quenches
 Opens up further opportunities for high-density QCD studies
 - For probes **not accessible** so far due to lower luminosity or energy
 - All 4 experiments participate \rightarrow complementary phase space regions, cross checks CMS Integrated Luminosity Delivered, PbPb+pPb

Theoretical setup for cross section calculation

- Rely on the two fundamental concepts of QCD
 - factorization (calculable) and universality (input from PDFs)

σ_{AA} = A × A × σ_{ρρ}

- **top++**(v2.0) NNLO+NNLL calculator with state-of-the-art (n)PDFs
 - bound nucleons' PDF: EPPS16 NLO ; baseline free proton PDF: CT14 NLO
 - nPDF net effects result in a small +6% modification (R_{PbPb}) of σ_{tt}
 - nPDF⊗ PDF uncertainty from the provided 56+40 eigenvalues → 10%
 - \square full calculation repeated with nCTEQ15
 - considering the 33 error sets
 - **QCD** scales choice: $\mu R = \mu F = 172.5$ GeV

@√s_{NN} =5.02 TeV

Key characteristics of the latest fits of nPDFs (in chronological order from left to right)

	EPS09	DSSZ12	ка15	ncteq15	epps16
Order in α_s	LO & NLO	NLO	NNLO	NLO	NLO
Neutral current DIS $\ell + A/\ell + d$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Drell-Yan dilepton p+A/p+d	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RHIC pions d+Au/p+p	\checkmark	\checkmark		\checkmark	\checkmark
Neutrino-nucleus DIS		\checkmark	Но	ssian matrix	\checkmark
Drell-Yan dilepton $\pi + A$					\checkmark
LHC p+Pb jet data	$\chi^2_{\text{global}} \approx \chi^2_0 + \sum_{i,j}$	$(a_i - a_i^0)$	H_{ij} $(a_j - a_j)$	$(j) = \chi_0^2 + \sum_i z_i$	✓
LHC p+Pb W, Z data					\checkmark
		Parameter var	ations		
arXiv:1704.04036 Q cut in DIS	1.3 GeV	1 GeV	1 GeV	2 GeV	1.3 GeV
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	17	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
⁹⁰ % CL defined by the global error to ferance $\Delta \chi^2$	50	30	not given	35	52
Free proton baseline PDFs	стеоб.1	мstw2008	jr09	стеобм-like	ст14NLO
Heavy-quark effects		\checkmark		\checkmark	\checkmark
Flavor separation				some	\checkmark
Reference	[JHEP 0904 065]	[PR D85 074028]	[PR D93, 014026]	[PR D93 085037]	[EPJ C77 163]

As compared to the PDF fitting landscape

Ubiali, DIS2017

April 2017	NNPDF3.0	MMHT2014	CT14	HERAPDF2.0	CJ15	ABMP16
Fixed Target DIS	~	~	~	×	 	~
JLAB	×	×	×	×	~	×
HERA I+II	~	 	~	~	 	~
HERA jets	×	~	×	×	×	×
Fixed Target DY	~	~	~	×	~	~
Tevatron W,Z	~	~	~	×	~	~
Tevatron jets	~	~	~	×	~	×
LHC jets	~	~	~	×	×	×
LHC vector boson	~	~	~	×	×	~
LHC top	~	×	×	×	×	~
Stat. treatment	Monte Carlo	Hessian Δχ² dynamical	Hessian Δχ² dynamical	Hessian Δχ²=1	Hessian Δχ²=1.645	Hessian Δχ²=1
Parametrization	Neural Networks (259 pars)	Chebyshev (37 pars)	Bernstein (30-35 pars)	Polynomial (14 pars)	Polynomial (24 pars)	Polynomial (15 pars)
HQ scheme	FONLL	TR'	ACOT-X	TR'	ΑCOΤ-χ	FFN (+BMST)
Order	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO	NLO/NNLO

What HION questions could top production elucidate?

- What happens to the gluon density in nuclei?
- How the confined hadronic states emerge from partons?
 - **impact** of ~0.5 GeV* on the top mass (M_{top}) reconstruction
 - **CR** is **modified** in higher color charge density regimes wrt. to the vacuum
 - e.g., in pA/AA collisions with increased UE activity
- Below color-charged partons, and colorless jets, interact with a **nuclear medium**?
 - measure the space-time evolution of the medium

A tomography of in-medium losses

Idea for a perfect yocto-chronometer!

Depending on the chosen p_T , the antenna may still lose some energy.

Knowing the energy loss, it is possible to build the density evolution profile of the medium!

The RPDPD differentially

Nuclear modification factor RPDPD for tt production in the dilepton channels with the central PDF sets of CT10+EPS09 as a function of lepton rapidity

Future physics opportunities for high-density QCD

- We can get better constraints with more data
 - Runs 3+4 and High-Luminosity LHC era in the near future, i.e., >=2026
 - to substantially reduce the statistical uncertainty in the measurement

