

Probing gluon saturation through precision studies of inclusive photon+(di)jet production in e+A DIS at small x

Kaushik Roy

Stony Brook University

10th International Conference (Online) on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions
June 2, 2020

KR, Venugopalan, JHEP 1805 (2018) 013 [arXiv: 1802.09550],

Phys. Rev. D 101 (2020) 3, 034028 [arXiv: 1911.04530], Phys. Rev. D 101 (2020) 7, 071505 [arXiv: 1911.04519]

Kolbe, KR, Salazar, Schenke, Venugopalan, in preparation.

The process: $e + A \rightarrow e + q\overline{q} + \gamma + X$ (inclusive)

KR, Venugopalan, arXiv: 1802.09550, 1911.04530, 1911.04519

fixed
$$Q^2 \gg \Lambda_{QCD}^2$$
, $s \to \infty$, $x_{Bj} \to 0$

Regge-Gribov small-x kinematics

The right moving nucleus with large P_N^+ has its x^- extent Lorentz contracted

Complements similar computations for pA collisions

Gelis, Jalilian-Marian, hep-ph/0205037
Dominguez, Marquet, Xiao, Yuan, arXiv:1101.0715
Benic, Fukushima, arXiv:1602.01989;
Benic, Fukushima, Garcia-Montero, Venugopalan, arXiv:1609.09424, 1807.03806

- Clean initial and final states
- Can be measured at a future Electron Ion Collider (EIC)

Measured at HERA at higher energies but lower luminosities

Inclusive γ

arXiv: 0711.4578, 0909.4223

Inclusive γ +jet

arXiv: 1206.2270

• Computed for the first time in the Color Glass Condensate (CGC) effective field theory

 $\chi' > \chi$

 $A[\rho]$

McLerran, Venugopalan, hep-ph/9309289 lancu, Leonidov, McLerran, hep-ph/0011241 lancu, Venugopalan, hep-ph/0303204

Born-Oppenheimer separation of modes

Static color sources (large x)

$$D_{\nu}F^{\nu\mu,a}(x) = \delta^{\mu+}\rho_A^a(x^-, \boldsymbol{x}_{\perp})$$

Dynamical gluon fields (small x)

CGC EFT provides a framework in QCD to systematically discuss

"classical" (multiple scattering) gluon radiation in the presence of sources and

"quantum" evolution (shadowing) of the strong sources: JIMWLK RGE

Why is it interesting?

γ^* probe responds to strongly correlated gluonic matter

Allows perturbative methods to compute

- "hard" coefficient functions "impact factors"
- Energy evolution of "soft" non-perturbative component JIMLWK RGE

$\gamma + q\overline{q}$ in DIS at NLO contains a wealth of information...

Differential measurements are sensitive to non-trivial many-body gluon correlations

Extant NLO results for DIS only for fully inclusive or diffractive measurements

Balitsky, Chirilli, arXiv: 1009.4729
Beuf, arXiv: 1606.00777, 1708.06557

Hanninen, Lappi, Paatelainen, arXiv: 1711.08207

Diffractive DIS dijet --- Boussarie, Grabovsky, Szymanowski, Wallon, arXiv:1606.00419

Fully Inclusive DIS

Systematic power counting in the CGC

At each order in α_s , higher twist (multiple scattering) contributions are resummed to all orders

Observable:
$$O = \sum_{n=0}^{\infty} c_n \alpha_S^n$$
 where $c_n = \sum_{j=1}^{\infty} d_{nj} (g \rho_A)^j$
$$\sum_{\text{gluons}} c_{nj} c$$

In the momentum space computation, these are incorporated into "dressed" quark and gluon propagators

These exponentiate into Wilson lines

CGC EFT also allows for a resummation of $\alpha_s ln(^1/_x)$ enhancements in loop computations, thanks to the JIMWLK Wilsonian RG equation

The NLO impact factor is crucial to attain NLO+NLLx accuracy

DIS photon+dijet at NLO+NLLx

Collect leading log (LL) pieces $\alpha_s \ln{(\frac{\Lambda_1^-}{\Lambda_0^-})}$

NLO pieces $\sim \alpha_s$ in the photon+dijet impact factor

Collect next-to-leading-log (NLL) pieces $\alpha_s^2 \ln{(\frac{\Lambda_1^-}{\Lambda_0^-})}$

LO pieces $\sim \alpha_s^0$ in the photon+dijet impact factor

By combining the NLO impact factor with the NLL resummed evolution kernel (NLO BK/JIMWLK), we can obtain $\alpha_s^3 \ln{(1/x)}$ accuracy.

NLO BK | Kovchegov, Weigert, hep-ph/0609090

NLO JIMWLK

Kovner, Lublinsky, Mulian, arXiv:1310.0378 Grabovsky, arXiv:1307.5414 Caron-Huot, arXiv:1309.6521 Balitsky, Chirilli, arXiv: 1309.7644 Balitsky, Grabovsky, arXiv: 1405.0443 Lublinksy, Mulian, arXiv: 1610.03453

LO impact factor results

Triple differential cross-section

$$\frac{\mathrm{d}^3 \sigma^{\mathrm{LO}}}{\mathrm{d}x \, \mathrm{d}Q^2 \mathrm{d}^6 K_{\perp} \mathrm{d}^3 \eta_K} = \frac{\alpha_{em}^2 q_f^4 y^2 N_c}{512 \pi^5 Q^2} \, \frac{1}{(2\pi)^4} \, \frac{1}{2} \, L^{\mu\nu} \tilde{X}_{\mu\nu}^{\mathrm{LO}}$$

Hadron tensor

$$ilde{X}_{\mu
u}^{
m LO} \propto \Xi(m{x}_\perp, m{y}_\perp; m{y}_\perp', m{x}_\perp')$$
 — Non-perturbative input on strongly correlated gluons

$$\Xi(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp}; \boldsymbol{y}'_{\perp}, \boldsymbol{x}'_{\perp}) = 1 - D_{xy} - D_{y'x'} + Q_{y'x';xy}$$

Dipole Wilson line correlator

Quadrupole Wilson line correlator

$$x_{\perp}$$
 y_{\perp}

Ubiquitous many-body correlators/building blocks of high energy QCD

NLO impact factor results

Triple differential cross-section to NLO+NLLx

$$\frac{\mathrm{d}^3 \sigma^{\text{LO+NLO+NLL}x; \text{jet}}}{\mathrm{d}x \mathrm{d}Q^2 \mathrm{d}^6 K_{\perp} \mathrm{d}^3 \eta_K} = \frac{\alpha_{em}^2 q_f^4 y^2 N_c}{512 \pi^5 Q^2} \frac{1}{(2\pi)^4} \frac{1}{2} L^{\mu\nu} \tilde{X}_{\mu\nu}^{\text{LO+NLO+NLL}x; \text{jet}}$$

Hadron tensor to NLO+NLLx

Jets were defined using a cone algorithm and we used small cone approximation

$$\tilde{X}_{\mu\nu}^{\mathrm{LO+NLO+NLL}x;\mathrm{jet}} = \int [\mathcal{D}\rho_{A}] W_{x_{\mathrm{Bj}}}^{NLLx}[\rho_{A}] \left[\left(1 + \frac{2\alpha_{S}C_{F}}{\pi} \left\{ -\frac{3}{4} \ln \left(\frac{R^{2}|\boldsymbol{p}_{J\perp}| |\boldsymbol{p}_{K\perp}|}{4z_{J}z_{K}Q^{2}e^{\gamma_{E}}} \right) + \frac{7}{4} - \frac{\pi^{2}}{6} \right\} \right) \tilde{X}_{\mu\nu}^{\mathrm{LO};\mathrm{jet}}[\rho_{A}] + \tilde{X}_{\mu\nu;\mathrm{finite}}^{\mathrm{NLO};\mathrm{jet}}[\rho_{A}] \right]$$

 $\alpha_s^2 \ln (1/x)$ enhanced contributions are absorbed into the redefinition of large x source distribution

We are missing terms of $O(\alpha_s^3 \ln (1/x))$ which are formally part of an NNLO calculation

Work in progress

Obtain results for the sub channels

Inclusive prompt photon+quark(jet) production at LO

Kolbe, KR, Salazar, Schenke, Venugopalan, in preparation

For the pA case, see Jamal's talk (Thursday)

Start from photon+dijet cross-section

KR, Venugopalan, arXiv: 1802.09550

3 more graphs

Integrate over the antiquark phase space

- Fully analytical expressions obtained for the "direct" photon+jet cross-section.
- Color structure mostly contains dipoles, and some quadrupoles (numerics challenging but possible)
 See for eg. LO inclusive dijet numerics including the quadrupole

Study qualitative features in a limit, $\mathbf{k}_{\gamma\perp}\gtrsim Q_s$ where the color structure

Generic caveat for EIC kinematics: Small-x constraint (x < 0.01) severely restricts transverse momenta of produced particles in differential measurements.

See Shu-Yi Wei's talk (Monday) for dihadrons

Summary

- We performed a first computation of inclusive photon+dijet production in e+A DIS at small x in the CGC framework to NLO in α_S .
- The simple structure of the dressed quark and gluon propagators in the "wrong" light cone gauge enables higher order computations in momentum space using otherwise standard covariant perturbation theory (pQCD) techniques.
- The NLO impact factor in combination with extant results on NLO JIMWLK provide the ingredients towards extending the precision to $\mathcal{O}(\alpha_S^3 \ln(1/x))$ accuracy.
- These results can be used to compute up to the same accuracy a number of particle production channels. The LO results for inclusive photon+jet are complete and will be available soon.
- Within simple limits, we see a suppression of the back-to-back peak in γ +jet with Q_s similar to diharons.

Outlook

One of the main goals of the EIC program

The physics of the saturation regime is novel and non-trivial

The semihard $k_{\perp} \sim Q_s$ from the target generalizes functional forms in the collinear framework to nontrivial integrals that in many instances have to be performed numerically

Much more complicated than their collinear counterparts

It needs to progress to where perturbative QCD is - higher order computations, tests of universality, factorization, global analyses etc.

The momentum space methods developed in our work are general and can be implemented in higher order CGC computations for p+A collisions

A systematic comparison between e+A and p+A data will enhance discovery potential of saturation

This will also help shed light on profound questions such as:

What is truly universal at small x?

Thank you and stay safe...