Measurements of photon- and Z-tagged jet quenching by ATLAS **Jeff Ouellette**

Jeff Ouellette for the ATLAS Collaboration, University of Colorado Boulder

June 4th, 2020 10th International Conference on Hard & Electromagnetic Probes of High-Energy Nuclear Collisions

University of Colorado Boulder

 \bullet access the initial parton p_T , before any energy loss occurs

• change the quark/gluon jet fraction

"The Golden Channel"

Pb+Pb, 5.02 TeV

Run: 366011

Event: 999067412

2018-11-15 22:59:24 CEST

= 420.1 GeV= 289.7 GeV= 3.74 TeV

Y+Jets in Pb+Pb

Phys. Lett. B 789 (2019) 167

- Momentum balance measurements between γ and anti- k_T (R=0.4) jets exploit initial-and-final momentum information
- Centrality dependence of shape indicates partonic energy loss
- Jet event selection affects results \Rightarrow hinders study of large E_{loss} events

V+Jets in Pb+Pb

• Jet event selection affects results \Rightarrow hinders study of large E_{loss} events

Y+Jets in Pb+Pb

Counting Z-tagged hadrons with ATLAS

Forward hadronic calorimeters

Toroid Magnets

Muon spectrometer

Pixel Tracker

Silicon Tracker

Electromagnetic calorimeter

Z boson events are tagged with high-level single electron/muon triggers

Counting Z-tagged hadrons with ATLAS

Muon spectrometer

Toroid Magnets

Pixel Tracker

Silicon Tracker

Electromagnetic calorimeter

Forward hadronic calorimeters Hadronic end-caps Hadronic calorimeter

Z boson events are tagged with high-level single electron/muon triggers

Modeling the underlying event

Mixed events have matching centrality & running conditions, but lack a Z

UE subtracted yields

_

 $X_{hZ} \equiv -$

 $p_{\mathsf{T}^{\mathsf{ch}}}$

ATLAS-CONF-2019-052

UE subtracted yields

X_hZ ≡

UE subtracted yields

ATLAS-CONF-2019-052

 $p_{\mathsf{T}^{\mathsf{ch}}}$

 $X_{hZ} \equiv -$

Pb+Pb modification

Hard Probes, June 2020 Seff Ouellette

Pb+Pb modification

Pb+Pb modification

ptch-dependent suppression/enhancement pattern of charged hadrons observed by ATLAS

Comparison to \(\cappa\)-tagged jet FF

ATLAS-CONF-2019-052

CMS: Phys. Rev. Lett. 121, 242301 (2018)

ATLAS Z-tagged hadrons (in jets)

 More suppression without jet requirement

 ⇒ likely a result from minimum p_T requirement on jets

Comparison to Y-tagged jet FF

Similar event selection

Similar measure

ATLAS Z-tagged hadrons (in jets)

 More suppression without jet requirement

 ⇒ likely a result from minimum p_T requirement on jets

Comparison to \(\cappa\)-tagged jet FF

ATLAS-CONF-2019-052

CMS: Phys. Rev. Lett. 121, 242301 (2018)

ATLAS Z-tagged hadrons (in jets)

 More suppression without jet requirement

 ⇒ likely a result from minimum p_T requirement on jets

In \(\chi\)-tagged jet fragmentation functions,

- SCET_G & CoLBT-hydro competitive at low-z
- Hybrid strong/weak coupling provides qualitatively correct behavior

Theoretical predictions

We are thankful to the theorists who provided us with predictions:

- Hybrid strong/weak coupling (JHEP 03 (2016) 053)
 - Includes back-reaction (□) leads to low-x_{hZ} enhancement)
- SCET_G (arXiv:1908.06979; PRD 93 (2016) 074030)
 - Bands represent variations on g from 1.8-2.2

ATLAS-CONF-2019-052

Theoretical predictions

We are thankful to the theorists who provided us with predictions:

- Hybrid strong/weak coupling (JHEP 03 (2016) 053)
 - Includes back-reaction (□) leads to low-x_{hZ} enhancement)
- SCET_G (arXiv:1908.06979; PRD 93 (2016) 074030)
 - Bands represent variations on g from 1.8-2.2

- Hybrid model predicts the data quite well
 - ... maybe disagrees around $x_{hZ} \sim 0.05 0.1? \Rightarrow$ Experimental uncertainties need work.
- SCET_G captures x_{hZ} dependence of suppression, but not quite enough

Theoretical predictions

- How do models predict behavior as a function of hadron p_T ?
- Enhancement and suppression amplitudes very well-predicted
- Similar to results from \(\cap2\)-tagged FF
- Need smaller uncertainties to be more definitive about p_T^{ch} ~ 3 GeV behavior

ATLAS-CONF-2019-052

Comparison to Y-tagged hadrons @ RHIC

- Z-tagged and \(\chi\)-tagged measurements directly comparable
- Despite different √s, nuclei, boson p_T...
 suppression remains comparable in magnitude
 between LHC & RHIC experiments
- But... LHC sees extra hadrons at lowest x_{hZ}
 values (larger phase space to probe)
- Look forward to \(\cappa+jet\) physics at sPHENIX!

ATLAS-CONF-2019-052 PHENIX: Phys. Rev. Lett. 111 (2013) 032301 STAR: Phys. Lett. B 760 (2016) 689

PHENIX Y-tagged hadrons Au+Au @ 200 GeV

STAR Y-tagged hadrons Pb+Pb @ 5.02 TeV

Summary

- Modification to Z-tagged hadron yields measured for the first time by ATLAS
- Complements measurements of jet quenching by LHC experiments
- Indications of suppression of high-p_T
 hadrons, enhancement at low-p_T (new
 kinematic region)
- Final paper to be released soon!
- All ATLAS HI public results <u>available here</u>

ATLAS-CONF-2019-052

Continually increasing sensitivity in experiment ⇒ new kinematic reaches are accessible to test our models of jet quenching

Thanks for your attention!

Backup

Y+jet balance & Rjy

⇒ fewer jets observed for low-p_T photons

Y-tagged jet frag. function

Modeling the underlying event

How do we mix events?

- 1. Reconstruct Z bosons in Pb+Pb data, measuring the total per-Z hadron yield
- 2. Randomly select a Z event and a minimum bias (MB) event with similar ΣE_{T}^{FCal} and running conditions
- 3. Extract UE yield by correlating the Z with hadrons in the MB event
- 4. Repeat until each Z boson has been mixed exactly 40 times

Mixing procedure is validated by MC closure test in which I_{AA} is calculated within ~few % of unity