Investigating Hard Splittings via Jet Substructure in pp and Pb–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Raymond ${\sf Ehlers}^1$ for the ALICE Collaboration

2020 June 03

¹Oak Ridge National Lab raymond.ehlers@cern.ch

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Online)

- Jet substructure provides access to the evolution of jet splittings.
- Can visualize the splitting phase space via the Lund Plane.
- Three variables define our splittings via the leading (1) and subleading (2) subjets:
 - $\Delta R = \sqrt{(\phi_1 \phi_2)^2 + (\eta_1 \eta_2)^2}$

$$z = rac{
ho_{\mathsf{T}}}{
ho_{\mathsf{T}}^{\mathsf{lead}} +
ho_{\mathsf{T}}^{\mathsf{sublead}}}$$

•
$$k_{\rm T} = p_{\rm T}^{\rm sublead} * \sin \Delta R$$

- Selecting on these variables provides a lever for exploring the phase space.
- pp: Limit contamination of QCD background.
- Pb-Pb: Select hard component of quenched jets.

- Jet substructure provides access to the evolution of jet splittings.
- Can visualize the splitting phase space via the Lund Plane.
- Three variables define our splittings via the leading (1) and subleading (2) subjets:
 - $\Delta R = \sqrt{(\phi_1 \phi_2)^2 + (\eta_1 \eta_2)^2}$

$$z = rac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{lead}} + p_{\mathrm{T}}^{\mathrm{sublead}}}$$

•
$$k_{\rm T} = p_{\rm T}^{\rm sublead} * \sin \Delta R$$

- Selecting on these variables provides a lever for exploring the phase space.
- pp: Limit contamination of QCD background.
- Pb-Pb: Select hard component of quenched jets.

- Jet substructure provides access to the evolution of jet splittings.
- Can visualize the splitting phase space via the Lund Plane.
- Three variables define our splittings via the leading (1) and subleading (2) subjets:
 - $\Delta R = \sqrt{(\phi_1 \phi_2)^2 + (\eta_1 \eta_2)^2}$

$$z = rac{
ho_{ extsf{T}}}{
ho_{ extsf{T}}^{ extsf{lead}} +
ho_{ extsf{T}}^{ extsf{sublead}}}$$

•
$$k_{\rm T} = p_{\rm T}^{\rm sublead} * \sin \Delta R$$

- Selecting on these variables provides a lever for exploring the phase space.
- pp: Limit contamination of QCD background.
- Pb-Pb: Select hard component of quenched jets.

- Jet substructure provides access to the evolution of jet splittings.
- Can visualize the splitting phase space via the Lund Plane.
- Three variables define our splittings via the leading (1) and subleading (2) subjets:
 - $\Delta R = \sqrt{(\phi_1 \phi_2)^2 + (\eta_1 \eta_2)^2}$

$$z = rac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{lead}} + p_{\mathrm{T}}^{\mathrm{sublead}}}$$

•
$$k_{\rm T} = p_{\rm T}^{\rm sublead} * \sin \Delta R$$

- Selecting on these variables provides a lever for exploring the phase space.
- pp: Limit contamination of QCD background.
- Pb-Pb: Select hard component of quenched jets.

Jet Substructure Measurements in ALICE

- Jet substructure measurements take advantage of precise ALICE tracking in the ITS and TPC.
 - Provide precise angular resolution down to low p_T.
- For these analyses, we measured R = 0.4 charged particle jets measured within |η| < 0.9.

- Jets are measured for $60 < p_{T_{jet}}^{ch} < 80 \text{ GeV}/c$ for both 2017 pp and 2018 Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}.$

Understanding Background Contributions

- Different strategies used by ALICE to suppress combinatorial background:
 - Measure small *R* jets.
 - Increase z_{cut}.
 - Measure in semi-central collisions.
 - Reduces jet quenching relative to central, but combinatorial background is heavily suppressed.

-p^{det}

P^{rec}, th)

0.2

0.1

- → See James Mulligan's talk on Wed. 10:20 for strategies in central collisions.
- Utilize event-wise constituent subtraction JHEP 08 (2019) 175.
 - Parameters optimized for Pb–Pb collisions.

Fully Unfolded z_g, n_{SD} in 30–50% Pb–Pb Collisions

Fully Unfolded R_g in 30–50% Pb–Pb Collisions

New for HP!

- Suppression of large angles and enhancement of small angles for both z_{cut}.
- Tested for consistency with unity, as determined by χ^2 CDF for sys + stat in quadrature.
 - $z_{cut} = 0.2$: p=0.03
 - z_{cut} = 0.4: p=0.029

Fully Unfolded R_g in 30–50% Pb–Pb Collisions

New for HP!

Model Comparisons for R_g in 30–50% Pb–Pb Collisions

New for HP!

 JETSCAPE: MATTER+LBT arxiv:1903.07706

- Pablos et al. Hybrid model JHEP 01 (2020) 044
 - $L = 0, 2/\pi T, \infty$

James Mulligan, Wed. 10:50 for 0–10%

Jet Substructure as a Tool to Study Medium Structure?/1

- What is the impact of the medium on jet substructure?
 - Point-like (Moliere) scattering? JHEP 05 (2013) 031, JHEP 01 (2019) 172
- Can we detect with jet substructure observables high-k_T emissions which are signature of point-like scatterers in the medium?

Jet Substructure as a Tool to Study Medium Structure?/2

- Searching for signatures of point-like scattering centers in the medium via large-angle hadron-jet decorrelation.
- ALICE has measured large-angle recoil jet deflections in √s_{NN} = 2.76 TeV: JHEP 09 (2015) 170.
- Consistent with no acoplanarity of recoil jets within uncertainties.
- ALICE measurements are ongoing in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
 - See Jaime Norman, Monday 12:55.

JHEP 09 (2015) 170

Jet Substructure as a Tool to Study Medium Structure?/3

- As an alternative approach, we consider using jet substructure as a tool to search for large angle scatterings.
- If a subjet is deflected at a large angle by a scattering center, it will increase the $k_{\rm T}$ of that splitting.
 - Point-like scatterers in the medium would appear as an excess of large $k_{\rm T}$ emissions in Pb–Pb collisions relative to pp collisions.
- Access to the same physics as investigated via hadron-jet decorrelations.

Methods for Extracting Hardest k_{T}

- Use grooming methods to identify the hardest k_T splitting in a jet:
 - For each considered splitting i, $k_{Ti} = p_{Ti} \sin \Delta R_i$
- We compare four main grooming methods:
 - Leading k_{T} : $\max_{i \in \mathrm{C/A}} k_{\mathrm{T}i}$
 - Leading $k_{\rm T}$ for all z > 0.2 splittings.
 - Dynamical grooming (PhysRevD.101.034004):
 - $\kappa^{a} = \frac{1}{p_{\mathsf{T}}} \max_{i \in \mathsf{C}/\mathsf{A}} [z_{i}(1-z_{i})p_{\mathsf{T}i}(\theta_{i}/R)^{a}]$
 - a = 1 Largest $k_T \sim \kappa^1 p_T$: " k_T Drop".
 - a = 2 Shortest splitting time $t_f^{-1} \sim \kappa^2 \rho_T$: "TimeDrop".

Number of splittings until the selected splitting converges at high k_{T} .

 $k_{\rm T}$ inclusive

 $k_{\rm T} > 5 ~{\rm GeV}/c$

Hardest k_T Measured in pp Collisions

- *k*_T follows characteristic steeply falling shape.
- PYTHIA in broad agreement with the data.

Leading k_{T}

Leading $k_{\rm T} z > 0.2$

Hardest k_T Measured in pp Collisions

- Dynamical grooming methods show same trends.
- PYTHIA in broad agreement with the data.

Dynamical time

New for HP!

Comparison Between Grooming Methods

- Comparison of the different grooming methods in pp collisions.
- Ratio is relative to leading k_{T} .
- At low-mid k_T there is some divergence between the methods.
- All grooming methods converge at high k_T.
- The exact same splitting is selected by all methods at very high k_T.

New for HP!

Toward Hardest k_T in Pb–Pb

- To access feasibility in Pb–Pb, study the correlation between the hardest k_T splitting in the parton graph and from declustering at particle level.
 - Identified the hardest k_T graph, and then performed declustering for R = 0.8 jets.
- Compare pythia graph vs:
 - Particle level PYTHIA (as crosscheck).
 - Particle level PYTHIA + thermal background.
- Strong correlation between the hardest emission and the hardest splitting at large k_T.
- Studied at EMMI RRTF Workshop on the space-time structure of jet quenching.

Toward Hardest k_T in Pb–Pb

- To access feasibility in Pb–Pb, study the correlation between the hardest k_T splitting in the parton graph and from declustering at particle level.
 - Identified the hardest k_T graph, and then performed declustering for R = 0.8 jets.
- Compare pythia graph vs:
 - Particle level PYTHIA (as crosscheck).
 - Particle level PYTHIA + thermal background.
- Strong correlation between the hardest emission and the hardest splitting at large k_T.
- Studied at EMMI RRTF Workshop on the space-time structure of jet quenching.

Summary and Outlook

- Measured $z_{\rm g}$, $R_{\rm g}$, and $n_{\rm SD}$ in 30–50% Pb–Pb and pp collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
 - $z_{\rm g}$, $n_{\rm SD}$ consistent with no modification.
 - *R*_g shows enhancement at small angles and suppression at large angles.
 - Both for $z_{cut} = 0.2$ and 0.4.
- Measured hardest $k_{\rm T}$ splittings in pp collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
 - Grooming methods converge at high k_T.
 - PYTHIA broadly consistent with data.
- Hardest $k_{\rm T}$ in Pb–Pb in progress.
- Further exploration of larger *R* jets, jet splitting structure, and grooming methods.

Backup

Jet Substructure Grooming

- Groomed jet substructure serves different purposes in pp vs Pb–Pb collisions.
- In pp: Limit contamination of QCD background (and pileup) in a controlled way while retaining bulk of perturbative radiation
- In Pb-Pb: Select hard component of quenched jets.
 - This isolates medium effects, making them easier to calculate.

Comparison to PYTHIA

- Comparison of the grooming methods to PYTHIA 8.
- PYTHIA broadly consistent with data within statistical and systematic uncertainties.
- Some hints of shape differences between PYTHIA and the data.
 - Hints are consistent for different grooming methods.

Model Comparisons for z_g , n_{SD} in 30–50% Pb–Pb

Consistent with no modification.

Consistent with no modification.