Investigating Hard Splittings via Jet Substructure in pp and Pb–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Raymond Ehlers1 for the ALICE Collaboration

2020 June 03

1:Oak Ridge National Lab
raymond.ehlers@cern.ch

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Online)
Jet substructure provides access to the evolution of jet splittings.

Can visualize the splitting phase space via the Lund Plane.

Three variables define our splittings via the leading (1) and subleading (2) subjets:

- \(\Delta R = \sqrt{(\varphi_1 - \varphi_2)^2 + (\eta_1 - \eta_2)^2} \)
- \(z = \frac{p_T^{\text{sublead}}}{p_T^{\text{lead}} + p_T^{\text{sublead}}} \)
- \(k_T = p_T^{\text{sublead}} \sin \Delta R \)

Selecting on these variables provides a lever for exploring the phase space.

- pp: Limit contamination of QCD background.
- Pb–Pb: Select hard component of quenched jets.
Jet substructure provides access to the evolution of jet splittings.

Can visualize the splitting phase space via the Lund Plane.

Three variables define our splittings via the leading (1) and subleading (2) subjets:

- \[\Delta R = \sqrt{(\varphi_1 - \varphi_2)^2 + (\eta_1 - \eta_2)^2} \]
- \[z = \frac{p_{T,\text{sublead}}}{p_{T,\text{lead}} + p_{T,\text{sublead}}} \]
- \[k_T = p_{T,\text{sublead}} \sin \Delta R \]

Selecting on these variables provides a lever for exploring the phase space.

pp: Limit contamination of QCD background.

Pb–Pb: Select hard component of quenched jets.
Jet substructure provides access to the evolution of jet splittings.

Can visualize the splitting phase space via the Lund Plane.

Three variables define our splittings via the leading (1) and subleading (2) subjets:

- \[\Delta R = \sqrt{(\varphi_1 - \varphi_2)^2 + (\eta_1 - \eta_2)^2} \]
- \[z = \frac{p_{T,\text{sublead}}}{p_{T,\text{lead}} + p_{T,\text{sublead}}} \]
- \[k_T = p_{T,\text{sublead}} \sin \Delta R \]

Selecting on these variables provides a lever for exploring the phase space.

pp: Limit contamination of QCD background.

Pb–Pb: Select hard component of quenched jets.
Jet substructure provides access to the evolution of jet splittings.

Can visualize the splitting phase space via the Lund Plane.

Three variables define our splittings via the leading (1) and subleading (2) subjets:

\[\Delta R = \sqrt{(\varphi_1 - \varphi_2)^2 + (\eta_1 - \eta_2)^2} \]

\[z = \frac{p_{T\text{sublead}}}{p_{T\text{lead}} + p_{T\text{sublead}}} \]

\[k_T = p_{T\text{sublead}} \sin \Delta R \]

Selecting on these variables provides a lever for exploring the phase space.

- pp: Limit contamination of QCD background.
- Pb–Pb: Select hard component of quenched jets.
Jet substructure measurements take advantage of precise ALICE tracking in the ITS and TPC.

- Provide precise angular resolution down to low p_T.
- For these analyses, we measured $R = 0.4$ charged particle jets measured within $|\eta| < 0.9$.
- Jets are measured for $60 < p_{T,\text{jet}}^{\text{ch}} < 80$ GeV/c for both 2017 pp and 2018 Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV.
Understanding Background Contributions

- Different strategies used by ALICE to suppress combinatorial background:
 - Measure small R jets.
 - Increase z_{cut}.
 - Measure in semi-central collisions.
 - Reduces jet quenching relative to central, but combinatorial background is heavily suppressed.
 - See James Mulligan’s talk on Wed. 10:20 for strategies in central collisions.

- Utilize event-wise constituent subtraction JHEP 08 (2019) 175.
 - Parameters optimized for Pb–Pb collisions.

Raymond Ehlers (ORNL) - 2020 June 03
Fully Unfolded z_g, n_{SD} in 30–50% Pb–Pb Collisions

z_g

- ALICE Preliminary
- $\sqrt{s_{NN}} = 5.02$ TeV
- Charged jets anti-k_T
- $R = 0.4$, $|\eta_{jet}| < 0.5$
- $60 < p_{T, ch jet} < 80$ GeV/c
- Soft Drop $z_{cut} = 0.2$, $\beta = 0$
- $f_{tagged}^{pp} = 0.89$, $f_{tagged}^{AA} = 0.88$

n_{SD}

- ALICE Preliminary
- $\sqrt{s_{NN}} = 5.02$ TeV
- Charged jets anti-k_T
- $R = 0.4$, $|\eta_{jet}| < 0.5$
- $60 < p_{T, ch jet} < 80$ GeV/c
- Soft Drop $z_{cut} = 0.2$, $\beta = 0$

Consistent with no modification.

Raymond Ehlers (ORNL) - 2020 June 03
Fully Unfolded R_g in 30–50% Pb–Pb Collisions

- Suppression of large angles and enhancement of small angles for both z_{cut}.
- Tested for consistency with unity, as determined by χ^2 CDF for sys + stat in quadrature.
 - $z_{\text{cut}} = 0.2$: $p=0.03$
 - $z_{\text{cut}} = 0.4$: $p=0.029$

Raymond Ehlers (ORNL) - 2020 June 03

ALICE Preliminary $\sqrt{s_{\text{NN}}} = 5.02$ TeV
Charged jets anti-k_T
$R = 0.4$, $|\eta_{\text{jet}}| < 0.5$

$60 < p_{T, \text{ch jet}} < 80$ GeV/c
Soft Drop $z_{\text{cut}} = 0.2$, $\beta = 0$

R_g $z_{\text{cut}} = 0.2$

R_g $z_{\text{cut}} = 0.4$
More symmetric splittings seem to be more suppressed in agreement with detector level measurements in the $\sqrt{s_{NN}} = 2.76$ TeV data (PLB 2020.135227).
Model Comparisons for R_g in 30–50% Pb–Pb Collisions

- **JETSCAPE**: MATTER+LBT
 arxiv:1903.07706

- Pablos et al. Hybrid model
 JHEP 01 (2020) 044
 - $L = 0, 2/\pi T, \infty$

\[R_g \text{ } z_{\text{cut}} = 0.2 \]

\[R_g \text{ } z_{\text{cut}} = 0.4 \]

James Mulligan, Wed. 10:50 for 0–10%
What is the impact of the medium on jet substructure?

Can we detect with jet substructure observables high-k_T emissions which are signature of point-like scatterers in the medium?
- Searching for signatures of point-like scattering centers in the medium via large-angle hadron-jet decorrelation.

- ALICE has measured large-angle recoil jet deflections in $\sqrt{s_{NN}} = 2.76$ TeV: JHEP 09 (2015) 170.

- Consistent with no acoplanarity of recoil jets within uncertainties.

- ALICE measurements are ongoing in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
 - See Jaime Norman, Monday 12:55.
As an alternative approach, we consider using jet substructure as a tool to search for large angle scatterings.

If a subjet is deflected at a large angle by a scattering center, it will increase the k_T of that splitting.

- Point-like scatterers in the medium would appear as an excess of large k_T emissions in Pb–Pb collisions relative to pp collisions.

- Access to the same physics as investigated via hadron-jet decorrelations.
Methods for Extracting Hardest k_T

- Use grooming methods to identify the hardest k_T splitting in a jet:
 - For each considered splitting i, $k_T i = p_T i \sin \Delta R_i$
- We compare four main grooming methods:
 - Leading k_T: $\max \limits_{i \in C/A} k_T i$
 - Leading k_T for all $z > 0.2$ splittings.
 - Dynamical grooming (PhysRevD.101.034004):
 \[\kappa^a = \frac{1}{p_T} \max \limits_{i \in C/A} [z_i(1 - z_i)p_T i(\theta_i/R)^a] \]
 - $a = 1$ - Largest $k_T \sim \kappa^1 p_T$: "k_TDrop".
 - $a = 2$ - Shortest splitting time $t_i^{-1} \sim \kappa^2 p_T$: "TimeDrop".

PYTHIA8 Particle Level: Jet $p_T = 83.3 \text{ GeV}/c$
k_T in node (GeV/c)
Iterative splitting
Harder subjet
Leading k_T splitting
Each grooming method has different characteristic behavior in the Lund Plane.

Leading k_T

Leading $k_T \ z > 0.2$

Dynamical k_T
Number of splittings until the selected splitting converges at high k_T.

k_T inclusive

$ALICE$ Simulation
$PYTHIA8 \sqrt{s} = 5.02$ TeV
Anti-\textit{k}_T charged jets
$R = 0.4, |\eta_{\text{jet}}| < 0.5$
$60 < \not{p}_{T,\text{ch jet}} < 80$ GeV/c

$k_T > 5$ GeV/c

$ALICE$ Simulation
$PYTHIA8 \sqrt{s} = 5.02$ TeV
Anti-\textit{k}_T charged jets
$R = 0.4, |\eta_{\text{jet}}| < 0.5$
$60 < \not{p}_{T,\text{ch jet}} < 80$ GeV/c
$k_T > 5$ GeV/c

- Leading k_T
- Leading $k_T z > 0.2$
- k_T Drop
- timeDrop
Hardest k_T Measured in pp Collisions

- k_T follows characteristic steeply falling shape.
- PYTHIA in broad agreement with the data.

Leading k_T

\[\frac{1}{N_{\text{jets}}} \frac{dN}{dk_T} (\text{GeV/c})^{-1} \]

ALICE Preliminary

$pp \sqrt{s} = 5.02$ TeV

Anti-k_T charged jets $R = 0.4, |\eta_{\text{jet}}| < 0.5$

60 < $p_{T,\text{ch\,jet}}^\text{ch} < 80$ GeV/c

Leading $k_T z > 0.2$

\[\frac{1}{N_{\text{jets}}} \frac{dN}{dk_T} (\text{GeV/c})^{-1} \]

ALICE Preliminary

$pp \sqrt{s} = 5.02$ TeV

Anti-k_T charged jets $R = 0.4, |\eta_{\text{jet}}| < 0.5$

60 < $p_{T,\text{ch\,jet}}^\text{ch} < 80$ GeV/c

$f_{\text{PYTHIA}}^{tagged} = 0.89$

$f_{\text{data}}^{tagged} = 0.84$

Raymond Ehlers (ORNL) - 2020 June 03
Hardest k_T Measured in pp Collisions

- Dynamical grooming methods show same trends.
- PYTHIA in broad agreement with the data.

Dynamical k_T

![Graph showing $1/N_{jets} \, dN/dk_T (GeV/c)^{-1}$ for ALICE Preliminary data and PYTHIA8 Monash 2013 results]

- ALICE Preliminary
 - $pp \sqrt{s} = 5.02$ TeV
 - Anti-k_T charged jets
 - $R = 0.4$, $|\eta_{jet}| < 0.5$
 - $60 < p_{T,ch\,jet} < 80$ GeV/c

Dynamical time

![Graph showing timeDrop and PYTHIA8 Monash 2013 results]

- ALICE Preliminary
 - $pp \sqrt{s} = 5.02$ TeV
 - Anti-k_T charged jets
 - $R = 0.4$, $|\eta_{jet}| < 0.5$
 - $60 < p_{T,ch\,jet} < 80$ GeV/c

Raymond Ehlers (ORNL) - 2020 June 03
Comparison Between Grooming Methods

- Comparison of the different grooming methods in pp collisions.
- Ratio is relative to leading k_T.
- At low-mid k_T there is some divergence between the methods.
- All grooming methods converge at high k_T.
- The exact same splitting is selected by all methods at very high k_T.
Toward Hardest k_T in Pb–Pb

- To access feasibility in Pb–Pb, study the correlation between the hardest k_T splitting in the parton graph and from declustering at particle level.
 - Identified the hardest k_T graph, and then performed declustering for $R = 0.8$ jets.
- Compare pythia graph vs:
 - Particle level PYTHIA (as crosscheck).
 - Particle level PYTHIA + thermal background.
- **Strong correlation** between the hardest emission and the hardest splitting at large k_T.
- Studied at EMMI RRTF Workshop on the space-time structure of jet quenching.

Raymond Ehlers (ORNL) - 2020 June 03
To access feasibility in Pb–Pb, study the correlation between the hardest k_T splitting in the parton graph and from declustering at particle level.

- Identified the hardest k_T graph, and then performed declustering for $R = 0.8$ jets.

- Compare pythia graph vs:
 - Particle level PYTHIA (as crosscheck).
 - Particle level PYTHIA + thermal background.

- **Strong correlation** between the hardest emission and the hardest splitting at large k_T.

- Studied at EMMI RRTF Workshop on the space-time structure of jet quenching.
Summary and Outlook

- Measured z_g, R_g, and n_{SD} in 30–50% Pb–Pb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
 - z_g, n_{SD} consistent with no modification.
 - R_g shows enhancement at small angles and suppression at large angles.
 - Both for $z_{cut} = 0.2$ and 0.4.
- Measured hardest k_T splittings in pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV.
 - Grooming methods converge at high k_T.
 - PYTHIA broadly consistent with data.
- Hardest k_T in Pb–Pb in progress.
- Further exploration of larger R jets, jet splitting structure, and grooming methods.

Raymond Ehlers (ORNL) - 2020 June 03
Backup
Jet Substructure Grooming

- Groomed jet substructure serves different purposes in pp vs Pb–Pb collisions.
 - In pp: Limit contamination of QCD background (and pileup) in a controlled way while retaining bulk of perturbative radiation
 - This isolates medium effects, making them easier to calculate.

[Diagram of jet substructure grooming]

MassDrop/SoftDrop
M. Dasgupta et al, JHEP1309 (2013) 029
A. Larkoski et al, JHEP 1405 (2014) 146
Grooming Method Characteristics - Lund Planes

Leading k_T

Dynamical time

Dynamical k_T
Comparison to PYTHIA

- Comparison of the grooming methods to PYTHIA 8.
- PYTHIA broadly consistent with data within statistical and systematic uncertainties.
- Some hints of shape differences between PYTHIA and the data.
 - Hints are consistent for different grooming methods.

![Graph showing comparison between PYTHIA and data](image-url)
Model Comparisons for z_g, n_{SD} in 30–50% Pb–Pb

Consistent with no modification.

Consistent with no modification.

Raymond Ehlers (ORNL) - 2020 June 03