Search for jet quenching effects in high-multiplicity proton-proton collisions at $\sqrt{s} = 13$ TeV

follow up of analysis presented at QM 2019 arXiv:2001.09517 with extensive PYTHIA studies

Filip Krizek, NPI CAS for the ALICE Collaboration

QGP in small collision systems?

- Evidence of collective effects in small collision systems
- No significant evidence of jet quenching
- Next steps for jet quenching searches
 - improve precision
 - other observables
 - other small collision systems

Jet quenching

Signatures of in-medium interactions

- Energy transport out of cone \rightarrow yield suppression at high p_{τ}
- Jet substructure modification
- Jet deflection → acoplanarity

Jet quenching in high-multiplicity pp collisions

• Inclusive $R_{\Delta\Delta}$ - Glauber scaling undefined \rightarrow measurement not possible

Acoplanarity

Initial state Sudakov radiation background L. Chen et al. PLB 773 (2017) 617

 $\Delta \varphi$

pp collisions at $\sqrt{s} = 13$ TeV

Data from 2016-2018

• Online triggers:

- Minimum bias (MB) 0.098 pb⁻¹ (3.2G events)

- High multiplicity (HM): 13 pb⁻¹

Offline event activity (EA) selection:

VOM = VOA + VOC

Scaled multiplicity V0M/\langle V0M/

 $\langle VOM \rangle$ = mean of MB distribution Enables comparison of runs with differing V0 gain, and with theory

• $5 < V0M/\langle V0M \rangle < 9 \approx 0.1\%$ of MB cross section

F. Krizek HP2020

4

Semi-inclusive recoil jet analysis

Not corrected for instrumental effects and background p_⊤-smearing

$$A_{jet}$$
 = jet area

- Charged-particle jets recoiling from high- $p_{\scriptscriptstyle T}$ hadron (Trigger Track, TT)
- Jet-wise correction for estimated event density ρ : $p_{\text{T,jet}}^{\text{ch reco}} = p_{\text{T,jet}}^{\text{ch raw}} \rho \cdot A_{\text{jet}}$
- Ensemble-level: correct for uncorrelated jet yield

ALI-PREL-339864

$$\Delta_{\text{recoil}}\left(p_{\text{T,jet}}^{\text{ch}}\right) = \frac{1}{N_{\text{trig}}} \frac{\text{d}N_{\text{jet}}}{\text{d}p_{\text{T,jet}}^{\text{ch}}} \bigg|_{\text{TT}\{20,30\}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{\text{d}N_{\text{jet}}}{\text{d}p_{\text{T,jet}}^{\text{ch}}} \bigg|_{\text{TT}\{6,7\}}$$

 $c_{\rm ref}$ ~0.95 data-driven correction factor due to observed conservation of total jet number

 $p_{\mathrm{T.iet}}^{\mathrm{ch,reco}} \left(\mathrm{GeV}/c \right)$

Acoplanarity with Δ_{recoil}

trigger

$$\Delta_{\text{recoil}} \left(\Delta \varphi \right) = \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \Big|_{\text{TT}\{20,30\}\& p_{\text{T,jet}}^{\text{ch}}\}} - c_{\text{ref}} \cdot \frac{1}{N_{\text{trig}}} \frac{dN_{\text{jet}}}{d\Delta \varphi} \Big|_{\text{TT}\{6,7\}\& p_{\text{T,jet}}^{\text{ch}}\}}$$

Acoplanarity versus event activity

Data not unfolded; estimated uncertainty from tracking efficiency

Significant suppression of HM wrt MB; effect is stronger for recoil jets with lower p_{τ}

7

Δ_{recoil} in raw data and PYTHIA

 Δ_{recoil} for TT{20,30} - TT{6,7}

Qualitative comparison to PYTHIA 8 Monash shows similar suppression pattern →

The effect may not be due to jet quenching

Use PYTHIA to explore the origin of the effect

Open questions from QM

- Is the enhanced acoplanarity at HM seen in PYTHIA due to color reconnections?
 - compare PYTHIA color reconnections on/off

- Does the HM requirement bias towards multi-jet final states?
 - look at jet distributions in PYTHIA

New PYTHIA high statistics simulations

• Charged particles $|\eta_{trk}| < 6$

Fully covering V0C : -3.7 < η < -1.7 and V0A : 2.8 < η < 5.1

- Events containing TT{20,30} or TT{6,7} in $|\eta|$ < 0.9
- Anti- $k_{\rm T}$ track-based jets with R=0.4 in
 - 1) ALICE central barrel: $|\eta_{iet}| < 0.5$
 - 2) broad η range: $|\eta_{\rm jet}| < 5.6$
- Color reconnection on/off

VOM defined by the number of charged, final state particles in VOA & VOC

HM in PYTHIA is $4 < V0M/\langle V0M \rangle < 9$; HM in real data is $5 < V0M/\langle V0M \rangle < 9$

PYTHIA 8 Monash: Δ_{recoil} in ALICE

ALICE

acceptance for CR on/off

Does color reconnection on/off show qualitative difference? → No

CR is not the primary factor generating enhanced acoplanarity in HM events

PYTHIA 8 Monash: recoil jet η distribution vs $p_{\mathrm{T,jet}}$

HM events:

- significant bias in distribution of high- $p_{\scriptscriptstyle T}$ recoil jets
- strong enhancement in forward trigger acceptance
- collision system is symmetric but V0s have asymmetric coverage
 - sharply different effects on η -bias

PYTHIA 8 Monash: recoil jet η distribution vs event activity (EA)

New for HP2020

- Does high EA selection enhance:
 - recoil jet distribution at large $|\eta|$? \rightarrow Yes
 - near-side jet distribution at large |η|? → No →
 HM selection biases recoil jets

PYTHIA 8 Monash: # high- p_{T} recoil jets

SALICE

vs Event Activity in ALICE acceptance

New observable to characterize the multi-jet distribution vs EA:

Distribution of the number of recoil jets above p_T threshold per triggered event

- → HM trigger suppresses events with 1 hard recoil jet in the ALICE central barrel
- → HM trigger enhances multi-jet events in small systems

Summary

- •ALICE data: Recoil jet yield suppression and broadening in HM events for $p_{\text{T.ch iet}} < 60 \text{ GeV/}c$
 - Similar effect observed in PYTHIA
- •New PYTHIA studies:
 - effect not due to color reconnection in model
 - HM induces bias towards multi-jet events in small systems
 - This bias must be taken into account in all studies of small collision systems at high multiplicity
- Direct observation of multi-jet bias of ALICE HM trigger?
 - PYTHIA shows significant signal
 - Next step: apply to ALICE data

Backup

Systematic check: Is the effect from high track density? ALICE

- Generated PYTHIA detector-level events with TT
- Embeded them into real MB and HM pp events
- Compared Δ_{recoil} distributions from PYTHIA Truth and Embedding (Hybrid)

All distributions agree →

PYTHIA 8 Monash: Δ_{recoil}

with color reconnection on/off

ALI-SIMUL-347655

ALI-SIMUL-347659

PYTHIA 8 Monash: Δ_{recoil}

with color reconnection off/on

ALI-SIMUL-347671

PYTIHA 8 Monash: # high- p_{T} jets recoiling from TT (20,30) GeV/c and random TT in ALICE

PYTHIA 8 Monash: Δ_{recoil} in $|\eta_{\text{jet}}| < 5.6$

For PYTHIA V0M we count charged, final state particles $-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$

- No jet quenching in PYTHIA $\rightarrow p_{\mathsf{T}}$ balance of back to back jets \rightarrow Would Δ_{recoil} measured in much wider η range still exhibit suppression?
 - → Suppression not observed

PYTHIA 8 Monash: # of high- p_{T} recoil jets vs Event Activity, broad acceptance

- Same calculation but for broad acceptance
 - \rightarrow HM condition enhances probability to have at least one high- p_{T} recoil jet
 - → The probability of having no high- $p_{\rm T}$ jet in $|\eta_{\rm iet}|$ < 5.6 is suppressed

F. Krizek HP2020