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Motivation cncﬁ%

* Understand kinetic and chemical equilibration of jets in heavy-lon collisions

* The processes that equilibrate the QGP are strongly reminiscent of jet-

energy quenching.

—> Maybe we can learn about QGP equilibration by looking at strongly

guenched jets?

—> Provide guidance for Monte Carlo’s/experiments studies.
e |arge separation of scales between Hard probes ~ p > T and the QGP

—> Jets can be treated perturbatively.
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Introduction cncﬁﬁ

The jet evolution in Heavy-lon collisions is dominated by at least three
different phases:

Interaction with Vacuum shower/

Initial production medium Hadronization

We will discuss mainly the interaction with medium and consider the full
equilibration of jets in the medium.
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Effective Kinetic Theory of QCD cncﬁ%

We start from an effective kinetic theory at leading order:
pho f(x, p,t) = C[{f}],

[P. B. Arnold, G. D. Moore, and
L. G. Yaffe (AMY) (2003)]

We consider jet as linearized fluctuation over static background equilibrium
J(p, 1) = ngo(p; T) + fiey(p5 1),

Define energy distribution (analogue to in-medium fragmentation function):

dN, V(Np) |
D (x,1) =x ~ p of(p) ;
dx E;

p:xE.

where x = 2 is the parton momentum fraction.

E;
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Effective Kinetic Theory of QCD: Processes

Py K

Cl{f}1= A 4+

[J. Blaizot et al. arXiv:1402.5049]
[J. Ghiglieri et al. arXiv: 1509.07773 ]

Small Angle approx.
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Evolution of the fragmentation function cncﬁ%

For jet energy E; = 10007 and g = 1.

. Energy stored in p > 2aT Casimir rescaled energy loss rate
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There are three regimes:
e |Initial energy loss: mediated by gluon radiation and re-coil terms.

* Energy cascade: universality between gluon/quark Jet. radiative break-up via
successive splittings, reminiscent of turbulence

e Equilibration: exponential decay, linear response.

Kinetic and chemical equilibration of jets 25/04/2020



Early time behavior : Gluon radiation CRC-TR:n
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Early time behavior : Quark radiation CRC-TR2n

Initial Gluon Jet Initial Quark Jet

Driven by therate g < gg «2me< Driven by the rate g <> gg¢ Pﬂ—ﬁq&ﬁ

Singlet Energy distribution Singlet Energy distribution
T 21T T T
10_1 T6 = 1.200 T3 = 0.600 ==— 1 ) L = 0.040 m—ry — 0,640 =— |
. 3 75 = 1.000 == 3 = 0.400 == 7 E 10~ 3 oy = 0.240 == = 0.840 —— E
N | N, 4= 0800 7/ =0.200 == = T3 = 0.440 == rg = 1.040
B 1] s
g 1072 3 E @ E
i PS4 | ] k=
£ 502, ] b ]
Rz b’ z |
e !3,' <
© r ] 0
w107 L . 80 4
= ] A= | ]
n | ] s
.l single quark production T
10— i ‘ R R ‘ | ‘ L 10~ i . . L L . M |
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Momentum fraction: = = E% Momentum fraction: x = E%
. D (x) + Dy(x)
Singlet =

|.Soudi Kinetic and chemical equilibration of jets 25/04/2020



Turbulent cascade: cncﬁ%

Gluon Energy distribution Gluon Energy distribution
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e Characteristic D(x) ~ L behavior, associated with invariant energy flux*.
X

*: Mehtar-Tani, S. Schlichting arXiv: 1807.06181
*: Blaizot, lancu, Mehtar-Tani arXiv: 1301.6102
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Turbulent cascade:

Singlet distribution: y/xDg(x)
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Turbulent cascade: CRC-TR 211

e

Evolution of the energy Flux
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* Energy loss of highly energetic jet is dominated by the turbulent cascade

* Characteristic D(x) ~ L behavior, associated with invariant energy flux.
X
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Late time behavior: Eigen value spectrum cncﬁ%

Ultimately the jet equilibrate with the medium.

* We write the EoM as an eigenvalue problem
0.5 (x,7) = C[{6f}] = Lf .

* The low-lying eigenvalues describe the equilibration at late times.
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Late time behavior: Eigen value spectrum cncﬁ%
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Late time behavior: Eigen value spectrum cncﬁ%

Ultimately the jet equilibrate with the medium.

* We write the EoM as an eigenvalue problem
0.5 (x,7) = C[{6f}] = Lf .
* The low-lying eigenvalues describe the equilibration at late times.

e Zero modes (4, = 0) stems from conservation quantities (Energy/Valence
charge) and its eigenvectors are the asymptotic behavior/stationary

solution.
D(X, + CO) — 5T0Tn(B0se / Fermi)(p’ T) |p=xEj’ and 5/’ta,un(Bose / Fermi)(p’ T) |p=xEj .
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Late time behavior: late time exponential decay CRC-TRn
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* The jet has lost most energy by the time near equilibrium physics sets in
—> Not relevant for jet physics.
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Jet chemistry: Quark to gluon ratio cncﬁ%
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e Jet chemistry varies as function of momentum fraction and energy loss:

x~T/E TE < x<x 1 x~1

Thermal non-thermal (Kolmogorov) Jet core
e Strongly quenched jets are quark rich

—> the most highly energetic particle is likely a quark

*: Mehtar-Tani, S. Schlichting arXiv:1807.06181
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Conclusion & Outlook cncﬁ%

e Jet equilibration itself is an interesting phenomena, where one can learn about
QCD far from equilibrium.

e Different stages of energy loss/in-medium fragmentation of jets:
- Initial energy loss due to soft radiation/recoil
- Radiative break-up via turbulent cascade
- Equilibration

* Energy loss dominated by turbulent cascade

e Strongly quenched jets are more likely to contain quarks

e Study angular dependence of the fragmentation function D(p,1,60).
—> Include large angle elastic processes.
* [nclude initial production and vacuum radiation for phenomenology.

Ttants you!
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Jet chemistry CRC-TR2n

High momentum energy per species

Initial Gluon Jet Initial Quark Jet

Quark jet: By ——
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High monetum particle energy for E(p > 27T
High monetum particle energy for E(p > 2xT)

Evolution time: 7 Evolution time: 7

e (Gluon loose energy faster than quarks
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Landau-Pomeranchuk-Migdal (Lpm) effect cncﬁ%

A particle undergoing multiple soft scattering experiences interference effects
that suppresses radiation of high gluon energies.

[Landau-Pomeranchuk-Migdal
(1953)]

These multiple soft scattering are taken into account in

the rate [BDMPS, Zakharov, AMY]
dry(p,2) P2 J d°p,
dz  2z(1-2p) Q2?2

Re [2pb . g(z,p)(pb)]a

Where s.,®v), is a solution to Schrodinger equation, with
B-BOdy Interaction H(t) = SE(py, t) — il3(B, t).
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