Fragmentation and equilibration of jets in a QCD plasma

Ismail Soudi

UNIVERSITÄT BIELEFELD

June 2, 2020

Based on I.Soudi, S. Schlichting (in preparation)

The 10th edition of the Hard and Electromagnetic Probes International Conference

Motivation

- Understand kinetic and chemical equilibration of jets in heavy-lon collisions
 - -> with the possibility of the jet to be lost in the medium

- The processes that equilibrate the QGP are strongly reminiscent of jetenergy quenching.
- —> Maybe we can learn about QGP equilibration by looking at strongly quenched jets?
- -> Provide guidance for Monte Carlo's/experiments studies.
- Large separation of scales between Hard probes ~ p ≫ T and the QGP
 —> Jets can be treated perturbatively.

Introduction

The jet evolution in Heavy-Ion collisions is dominated by at least three different phases:

We will discuss mainly the interaction with medium and consider the full equilibration of jets in the medium.

Effective Kinetic Theory of QCD

We start from an effective kinetic theory at leading order:

$$p^{\mu}\partial_{\mu}f_{i}(\overrightarrow{x},\overrightarrow{p},t)=C[\{f_{i}\}],$$

[P. B. Arnold, G. D. Moore, and L. G. Yaffe (AMY) (2003)]

We consider jet as linearized fluctuation over static background equilibrium

$$f(p,t) = n_{\text{eq}}(p;T) + \delta f_{\text{jet}}(p,t),$$

Define energy distribution (analogue to in-medium fragmentation function):

$$D_a(x,t) \equiv x \frac{dN_a}{dx} \sim \frac{\nu_a(N_f)}{E_j} p^3 \delta f(p) \bigg|_{p=xE_j},$$

where $x = \frac{p}{E_j}$ is the parton momentum fraction.

Effective Kinetic Theory of QCD: Processes

$$P_2$$
 $Q = (P_1 - K_1)$
 $Q = (P_1 - K_1)$

$$C[\{f_i\}] = C^{2\leftrightarrow 2}[\{f_i\}]$$

- [J. Blaizot et al. arXiv:1402.5049]
- [J. Ghiglieri et al. arXiv: 1509.07773]

Small Angle approx.

$$C_a^{\text{small}}[\{f_i\}] = -\nabla_p \mathcal{J}_a + S_a$$

Diffusion \hat{q} and Drag η_D

Conversion

"Recoil"

$$T + q$$

$$T$$
 QQQQ \bullet T

where $\gamma_{eq} \sim g^4 T$.

LPM resummed Rate.

[P. B. Arnold, G. D. Moore, and L. G. Yaffe (AMY) (2003)]

$$C^{1\leftrightarrow 2}[\{f_i\}]$$

Results

Evolution of the fragmentation function

For jet energy $E_j = 1000T$ and g = 1.

Casimir rescaled energy loss rate

There are three regimes:

- Initial energy loss: mediated by gluon radiation and re-coil terms.
- Energy cascade: universality between gluon/quark Jet. radiative break-up via successive splittings, reminiscent of turbulence
- Equilibration: exponential decay, linear response.

Early time behavior: Gluon radiation

Initial Gluon Jet

Driven by the rate $g \leftrightarrow gg$

Gluon Energy distribution

0.1

Momentum fraction: $x = \frac{p}{E_i}$

0.01

Initial Quark Jet

Driven by the rate $q \leftrightarrow qg$

Gluon Energy distribution

 10^{-5}

0.001

Early time behavior: Quark radiation

Initial Gluon Jet

Driven by the rate $g \leftrightarrow q\bar{q}$

Singlet Energy distribution $T \qquad 2\pi T$ $10^{-1} \qquad \qquad \tau_6 = 1.200 \qquad \tau_3 = 0.600 \qquad \qquad \tau_5 = 1.000 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_4 = 0.800 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_3 = 0.600 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.400 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_2 = 0.000 \qquad \qquad \tau_1 = 0.200 \qquad \qquad \tau_1 = 0.200$

Initial Quark Jet

Driven by the rate $q \leftrightarrow qg$

Singlet Energy distribution

Singlet =
$$\frac{D_q(x) + D_{\bar{q}}(x)}{2}$$

Turbulent cascade:

Initial Gluon Jet

Initial Quark Jet

• Characteristic $D(x) \sim \frac{1}{\sqrt{x}}$ behavior, associated with invariant energy flux*.

^{*:} Mehtar-Tani, S. Schlichting arXiv: 1807.06181

^{*:} Blaizot, Iancu, Mehtar-Tani arXiv: 1301.6102

Turbulent cascade:

Initial Gluon Jet

Singlet Energy distribution $T \qquad 2\pi T$ $10^0 \qquad \qquad \tau = 0.2 \qquad \tau = 2.3 \qquad \qquad \tau = 0.4 \qquad \tau = 3.2 \qquad \qquad \tau = 0.9 \qquad \tau = 4.1 \qquad \qquad \tau = 1.8 \qquad$

Initial Quark Jet

Turbulent cascade:

Evolution of the energy Flux up to an arbitrary scale: Λ

$$\int_{\Lambda}^{\infty} dx \sum_{i} \partial_{\tau} D_{i}(x)$$

- Energy loss of highly energetic jet is dominated by the turbulent cascade
- Characteristic $D(x) \sim \frac{1}{\sqrt{x}}$ behavior, associated with invariant energy flux.

Late time behavior: Eigen value spectrum

Ultimately the jet equilibrate with the medium.

We write the EoM as an eigenvalue problem

$$\partial_{\tau} \delta f_i(x, \tau) = C[\{\delta f_i\}] = \lambda_i \delta f_i.$$

The low-lying eigenvalues describe the equilibration at late times.

Late time behavior: Eigen value spectrum

Ultimately the jet equilibrate with the medium.

We write the EoM as an eigenvalue problem

$$\partial_{\tau} \delta f_i(x, \tau) = C[\{\delta f_i\}] = \lambda_i \delta f_i$$
.

The low-lying eigenvalues describe the equilibration at late times.

Late time behavior: Eigen value spectrum

Ultimately the jet equilibrate with the medium.

We write the EoM as an eigenvalue problem

$$\partial_{\tau} \delta f_i(x, \tau) = C[\{\delta f_i\}] = \lambda_i \delta f_i.$$

- The low-lying eigenvalues describe the equilibration at late times.
- Zero modes ($\lambda_0 = 0$) stems from conservation quantities (Energy/Valence charge) and its eigenvectors are the asymptotic behavior/stationary solution.

$$D(x, +\infty) = \delta T \partial_T n_{(Bose / Fermi)}(p; T) \big|_{p=xE_j}, \text{ and } \delta \mu \partial_\mu n_{(Bose / Fermi)}(p; T) \big|_{p=xE_j}.$$

Late time behavior: late time exponential decay

Energy Loss Rate

Valence Charge Loss Rate

The jet has lost most energy by the time near equilibrium physics sets in
 Not relevant for jet physics.

Jet chemistry: Quark to gluon ratio

Jet chemistry varies as function of momentum fraction and energy loss:

$$x \sim T/E$$
 $-T/E \ll x \ll 1$ $x \sim 1$ Thermal non-thermal (Kolmogorov) Jet core

- Strongly quenched jets are quark rich
 - -> the most highly energetic particle is likely a quark

^{*:} Mehtar-Tani, S. Schlichting arXiv:1807.06181

Conclusion & Outlook

- Jet equilibration itself is an interesting phenomena, where one can learn about QCD far from equilibrium.
- Different stages of energy loss/in-medium fragmentation of jets:
 - Initial energy loss due to soft radiation/recoil
 - Radiative break-up via turbulent cascade
 - Equilibration
- Energy loss dominated by turbulent cascade
- Strongly quenched jets are more likely to contain quarks

- Study angular dependence of the fragmentation function $D(p,t,\theta)$.
 - —> Include large angle elastic processes.
- Include initial production and vacuum radiation for phenomenology.

Thank you!

Backup

Jet chemistry

High momentum energy per species

Initial Gluon Jet

Initial Quark Jet

- Gluon loose energy faster than quarks
- lacktriangle

Landau-Pomeranchuk-Migdal (Lpm) effect

A particle undergoing multiple soft scattering experiences interference effects that suppresses radiation of high gluon energies.

[Landau-Pomeranchuk-Migdal (1953)]

These multiple soft scattering are taken into account in the rate

$$\frac{d\Gamma_{bc}^{a}(p,z)}{dz} = \frac{\alpha_{s}P_{ij}(z)}{2z(1-z)p} \int \frac{d^{2}p_{b}}{(2\pi)^{2}} \operatorname{Re} \left[2\mathbf{p_{b}} \cdot \mathbf{g_{(z,p)}}(\mathbf{p_{b}})\right],$$

Where $g_{(z,p)}(\mathbf{p_b})$, is a solution to Schrödinger equation, with 3-Body interaction $H(t) = \delta E(\mathbf{p_b}, \mathbf{t}) - \mathbf{i}\Gamma_3(\mathbf{B}, \mathbf{t})$.