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Motivation
Theory

Goal:
o Explore the non-perturbative effects of the soft interactions of hard par-

tons propagating through a QCD medium
o Data-driven constraints on transport coefficients of soft interactions

Question:
o To what extent the coefficients can be constrained fromm measurements?

o How many observables do we need?
o What is the effect of reducing experimental uncertainties?

This work:
o Proof of principle calculation
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Proof of principle calculation
Theory
Utilize closure test to demonstrate the purpose of this calculation:
o calculate observables using known parton transport coefficient (G o)

o apply Bayesian analysis on the calculated observables

o transport coefficients are expected to be constrained at the known value G o

o determine which observable can best constrain the transport coefficients
Closure test gives us knowledge of "real" soft transport coefficients value.

Tianyu Dai (Duke University) Hard Probes 2020 3/16



Hard-soft factorized model of parton energy loss

J. Ghiglieri, G. Moore, D. Teaney, JHEPO3 (2016) 095
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Weakly-coupled effective kinetic approach @ K

Theory €
o Perturbative parton-medium interaction

o Dynamics of quasiparticles are described by transport equations
o Energy gain and loss are naturally included

Leading-order realizations (e.g. MARTINI):

@ +v-VyPExt) = —CZ2] - Cl2f]
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Hard-soft factorization of energy loss
ref: S. Jeon (QM 2017) Theory
Interactions with the medium:

—r? ? rofsoft ncastc o Large number of soft interactions
o Rare hard scatterings

elastic collision

inelastic collision
. .large number

Parton energy loss factorized as hard interactions + diffusion process

Benefits of factorized transport model

o Systematically factorized soft and hard parton-plasma interactions

o Efficient and flexible stochastic description of soft interactions
1. Dynamical properties are encoded in a few parameters
2. Diffusion process does not rely on the quasiparticle assumption
3. Parametric diffusion process enables Baysian analysis
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Treatments to Different Processes
~ Theor
0: momentum exchange, w: energy exchange, §, = v/q2 — w? Y

Elastic interactions: Inelastic interactions:

q.
Large-angle interactions: Diffusion
vacuum matrix elements Splitting process: Large-w interactions:
approximation Langevin resummed integral equations
Ha Diffusion process: model
Langevin model
w

{ C2¢2 4 012 - Clarge—angle(MdL’ /\) + Csplit(/\) + Clarge—w( ) + Cgiﬁ(u% ) ’

1=~ 2. [t 6] -3 505 [ (99000 (59-59) ) 6]

cdiff is parametric, and suitable for data-driven constraints.
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Numerical vs analytical diffusion coefficients - coupling
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Analytical diffusion coefficients:
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Numerical diffusion coefficients:
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Proof of principle calculation:
constraining transport coefficients

Use closure test instead of real data, since this gives us knowledge of "real" §q.

o Use pre-set §q,¢ to construct "data”
o Apply Bayesian analysis on the observables to constrain §
o Compare the constrained Gg,g With the known true g

o Study how adding observables and reducing uncertainties improve the
constraints

We perform the calculation in JETSCAPE framework v3'.

1J.H. Putschke, et al,, arXiv:1902.05934 (2019). https://github.com/JETSCAPE/JETSCAPE
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Introduction to Bayesian analysis

Parameter space x

(weighted by prior)

Extend design points to the
whole parameter space
(Gaussian emulator, linear

interpolation, ...) A finite set of model
Predication {x;, y(x;)}

Prediction

Bayes theorem
Posterior « Likelihood x Prior

|

{ Posterior }

ref: modified based on W. Ke (JETSCAPE winter school 2019)
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D
Construct "data" @H

. . Theory €
o calculate observables using known soft transport coefficients:
— _ A _ ~analytical
/’LW - lu’dJ_ - 2Tl qSOft - qsoft
. 2 2 = \2
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D
How much is the coefficient constrained? @.‘2

Theory €
Constrain q.5 = kG2abtical - 1is expected
Osoft = Flgoft o R= p :
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How does the data uncertainty affect the constrain?

We construct the data using the same parameters, but with smaller uncertainties.
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D
How does adding an observable affect the constrain? @}2

We constrain the parameters on the observables parton jet Ry (R=0.4) and
charged hadron Rap at the same time.
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D
Posterior prediction @H

Theory €
We sample the parameter using the posterior probability distribution to calculate
the observable.
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D
Conclusion & Outlook @E

o Energy loss model is reformulated as hard collisions+diffusion.
o Systematic and flexible factorization in the weakly-coupled limit.
o Bayesian analysis on soft transport coefficients is applied.

o Constrain quality of different observables is studied.

Study with more observables
Use more flexible parametric format of soft transport coefficients

o

o

Constrain other parameters at the same time (e.g. hard-soft cutoff)

(@]

Study more centralities with realistic hydrodynamic events

(@]

Make predictions with real data-driven constraints

@]
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