String shoving effects on jets in pp collisions in PYTHIA8

Smita Chakraborty1
With Christian Bierlich1,2, Gösta Gustafson1, Leif Lönnblad1

1\textsuperscript{}Lund University
2\textsuperscript{}Niels Bohr Institute

10th International Conference on Hard and Electromagnetic Probes in High-Energy Nuclear Collisions
2nd June 2020
Questions to answer:

1. Explanation of possible collective effects in high multiplicity p-p collisions with string model

2. Is there any jet quenching in high multiplicity p-p events? Explanation in string model?

3. String model to study A-A systems

4. Quest for a unified model: from $e^+ - e^-$ to A-A collision systems
Angantyr and advancements

- Aspects of Angantyr:
 - A-A is treated as a collection of overlaid p-p collisions
 - Modifications needed when one nucleon in one nucleus collides with several nucleons in the other
 - No collective effects

The elliptic flow coefficient $v_2\{2\}$ at $\sqrt{s_{NN}} = 2.76\, TeV$, as measured by CMS (without $\Delta \eta$-gap) and ALICE (with $\Delta \eta = 1$), compared to the non-flow contribution calculated by Angantyr

Aspects of Angantyr:
✓ A-A is treated as a collection of overlaid p-p collisions
✓ Modifications needed when one nucleon in one nucleus collides with several nucleons in the other
✓ No collective effects

Signatures
Final-state collective effects
Jet quenching
Strangeness enhancement

Underlying mechanisms
String shoving
Colour reconnection
Rope hadronization*

Steps involved in implementing string shoving (for massless partons):

1. Symmetric topology for strings \(\rightarrow\) **Parallel frame**
2. Giving strings **width** \(\rightarrow\) calculate interaction force
3. **Push distribution among hadrons**
2. Interaction energy

1. A string of width R:

$$\text{Field } E(r_\perp) = C \exp \left(-\frac{r_\perp^2}{2R^2} \right)$$ \hspace{1cm} (1)

2. Force $f(d_\perp)$ per unit length:

$$f(d_\perp) = \frac{dE_{int}}{dd_\perp} = \frac{gKd_\perp}{R^2} \exp \left(-\frac{d_\perp^2(t)}{4R^2} \right)$$ \hspace{1cm} (2)

where g is a tunable parameter.
1. Lorentz invariant frame - the parallel frame

Figure: 1,2,3,4 are partons (string-ends), $\theta = \text{opening angle}$, $\phi = \text{skew angle}$.

Left: view from above. **Right**: Schematic view of two strings in the parallel frame
Role of parallel frames in jets

- Jets \rightarrow quarks and gluons

- Interaction with partons following rule of least string length \rightarrow modifies jets
3. 'Push' distribution among hadrons

- t_1 is earliest and t_5 is the latest time
- String extends in the longitudinal direction along x and the shoving kink is along y
- Kink extends over t_i
- String breaks following fragmentation function and the push is distributed following energy-momentum conservation
Parton vertices and hadronization

- Eg. a kink produced at t_2 will spread in a lightcone
- The hadrons produced in this lightcone will carry the p_T push in a way such that they keep moving along their original pseudorapidity
PRELIMINARY RESULTS
Set 1: What are we looking at?

1. \(S_N = \frac{1}{N(N-1)} \frac{d^2 N^{signal}}{d \Delta \phi d \Delta \eta} \)

2. \(B_N = \frac{1}{N^2} \frac{d^2 N^{mixed}}{d \Delta \phi d \Delta \eta} \)

3. \(R(\phi) = \left\langle (\langle N \rangle - 1) \left(\frac{S_N}{B_N} - 1 \right) \right\rangle \)

 where \(\langle N \rangle \) is the number of tracks per event averaged over the multiplicity bin, and the final \(R(\Delta \eta, \Delta \phi) \) is found by averaging over multiplicity bins

Set 1: Di-hadron correlations in p-p at 7 TeV at minbias

0 0.5 1 1.5 2 2.5 3
-1 -0.5 0 0.5 1

N < 35, 1 < p⊥ < 2, 2.0 < ∆η < 4.8

90 < N < 110, 1 < p⊥ < 2, 2.0 < ∆η < 4.8

35 < N < 90, 1 < p⊥ < 2, 2.0 < ∆η < 4.8

110 < N, 1 < p⊥ < 2, 2.0 < ∆η < 4.8
Di-hadron correlations in p-p at 7 TeV at minbias

1. Pick charged hadron in $|\Delta \eta| < 2.4$ with $6 \text{ GeV} < p_T < 8 \text{ GeV}$

2. Pick associated charged hadron in $|\Delta \eta| < 2.4$ with $4 \text{ GeV} < p_T < 6 \text{ GeV}$

3. Calculate $\Delta \phi$ between high p_T hadron and associated lower p_T hadron

4. No background subtraction performed
Set 2: Charged hadron correlation in p-p at 7 TeV for $g=0.5$

No 'jet' suppression predicted in high-multiplicity p-p collisions
Set 2: Charged hadron correlation in p-p at 7 TeV for $g=5$

- $N < 35, -2.4 < \Delta \eta < 2.4$
- $35 < N < 90, -2.4 < \Delta \eta < 2.4$
- $90 < N < 110, -2.4 < \Delta \eta < 2.4$
- $110 < N, -2.4 < \Delta \eta < 2.4$
Set 2: Charged hadron correlation in p-p at 7 TeV for $g=5$

$g=5$ gives a feel about the shoving effects in jets in larger systems such as heavy-ion collisions even with $g=0.5$, hence shoving could contribute to some jet quenching effects.
Set 3: v_2 in Pb-Pb at 5.02 TeV

- Example case in Pb-Pb: initial state with long parallel strings
- Calculate force on a string cutting through such an environment
- Calculate v_2

Christian Bierlich’s plenary talk on Wednesday
Set 4: Two particle correlations in $e^+ - e^-$ at 91 GeV

- Applicable to all systems: the parallel frame allows shoving in e^+e^- geometries
- Recent re-analysed ALEPH data is important for cross checks

- Possibility of dedicated predictions for more elaborate observables
- Opportunities for FCC-ee with more statistics
- **Wanted:** Rivet implementation of analyses with archived data
Conclusions

1. Summary:

- Parallel frame formalism extends the baseline to study jets including string interactions
- Space-time dependent string width gives better grip in calculation of interaction force
- Shoving gives an observable collective effect in high multiplicity p-p
- Two particle correlations in high-pT hadrons do not predict any suppression in jets in string interaction picture

2. Coming soon:

- Shoving in p-A and A-A systems
- Jet observable analysis for p-A and A-A systems
EXTRAS
Di-hadron correlations in p-p at 7 TeV

Di-hadron correlations in p-Pb

Di-hadron correlations in p-Pb

Rivet analysis used is for p-p!

Di-hadron correlations in p-Pb

Note: Rivet analysis used is for p-p!