ˇ

Getting into the Swing of things in Heavy Ion Collisions

Leif Lönnblad

Department of Astronomy and Theoretical Physics Lund University

Hard Probes 2020-06-04

Introduction

Dipole showers

Outline

- \blacktriangleright Parton showers and Colour (re)connections
- The perturbative dipole swing \blacktriangleright
- Angantyr and the swing in heavy ion collisions Þ
- Outlook \blacktriangleright

Introduction

Dipole showers Colour reconnections

Outline

- ▶ Parton showers and Colour (re)connections
- \blacktriangleright The perturbative dipole swing
- Angantyr and the swing in heavy ion collisions Þ
- Outlook Þ
- ▶ WARNING: NO RESULTS YET

[Introduction](#page-1-0) [Dipole showers](#page-4-0) [Colour reconnections](#page-15-0)

The importance of colour connections

ˇ

- \blacktriangleright All hadrons are colour singlets.
- \blacktriangleright Any realistic hadronisation model must ensure this.
- \blacktriangleright Exact treatment of colour structures in LHC events is impossible(?)
- **►** All partons shower approaches use the $N_C \rightarrow \infty$ approximation which gives a unique colour strucure.

ˇ

[Dipole showers](#page-4-0)

[Colour reconnections](#page-15-0)

- \blacktriangleright Dipole splitting
- \blacktriangleright How are the dipoles connected?
- \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.
- $\triangleright N_C \to \infty$ gives a unique colour flow.
- \triangleright But $N_C = 3$.

ˇ

[Colour reconnections](#page-15-0)

- \blacktriangleright Dipole splitting
- \blacktriangleright How are the dipoles connected?
- \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.
- $\triangleright N_C \to \infty$ gives a unique colour flow.
- \triangleright But $N_C = 3$.

ˇ

[Colour reconnections](#page-15-0)

Dipole showers

Dipole splitting

 \blacktriangleright How are the dipoles connected? \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.

 $\triangleright N_C \to \infty$ gives a unique colour flow.

ˇ

[Colour reconnections](#page-15-0)

Dipole showers

Dipole splitting

 \blacktriangleright How are the dipoles connected? \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.

 $\triangleright N_C \to \infty$ gives a unique colour flow.

ˇ

[Colour reconnections](#page-15-0)

Dipole showers

Dipole splitting

 \blacktriangleright How are the dipoles connected? \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.

 $\triangleright N_C \to \infty$ gives a unique colour flow.

ˇ

[Colour reconnections](#page-15-0)

Dipole showers

Dipole splitting

How are the dipoles connected?

 \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.

 $\triangleright N_C \to \infty$ gives a unique colour flow.

ˇ

[Colour reconnections](#page-15-0)

Dipole showers

Dipole splitting

How are the dipoles connected?

 \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected.

ˇ

Dipole showers

- Dipole splitting
- How are the dipoles connected?
- \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected. Nature likes short strings.
- \triangleright $N_C \rightarrow \infty$ gives a unique colour flow.

ˇ

- Dipole splitting
- How are the dipoles connected?
- \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected. Nature likes short strings.
- \triangleright $N_C \rightarrow \infty$ gives a unique colour flow.
- But $N_C = 3$.

ˇ

- Dipole splitting
- How are the dipoles connected?
- Pre-confinement: partons close in phase space are likely to be colour-connected. Nature likes short strings.
- \triangleright $N_C \rightarrow \infty$ gives a unique colour flow.
- But $N_C = 3$.

ˇ

- Dipole splitting
- How are the dipoles connected?
- \blacktriangleright Pre-confinement: partons close in phase space are likely to be colour-connected. Nature likes short strings.
- \triangleright $N_C \rightarrow \infty$ gives a unique colour flow.
- But $N_C = 3$.

Dipole showers [Colour reconnections](#page-15-0) [The dipole swing](#page-18-0)

Colour reconnections

Colour reconnections is a way to include effects of $N_C < \infty$. The guiding principles are:

^I Probability to reconnect [∼] ¹/*^N* 2 *C*

ˇ

- \blacktriangleright Nature likes short strings
- \blacktriangleright There are no colour-singlet gluons.

[Sjöstrand, Khoze, Gustafson, Zerwas, Lönnblad, Edin, Ingelman, Rathsman, Gieseke, Kirchgaeßer

Dipole showers[®] [Colour reconnections](#page-15-0) [The dipole swing](#page-18-0)

ˇ

Short strings?

We typically measure the string lengths in terms of the λ-measure

For a string consisting of *n* dipoles between a quark and an anti-quark connected with *n* − 1 gluons:

 $(q_0 - g_1 - g_2 - \cdots - g_{n-1} - \bar{q}_n)$

$$
\lambda = \sum_{i=0}^{n-1} \log \left(1 + \frac{m_{i,i+1}^2}{m_0^2} \right)
$$

Dipole showers [Colour reconnections](#page-15-0) [The dipole swing](#page-18-0)

ˇ

Short strings?

We typically measure the string lengths in terms of the λ-measure

For a string consisting of *n* dipoles between a quark and an anti-quark connected with *n* − 1 gluons:

 $(q_0 - q_1 - q_2 - \cdots - q_{n-1} - \bar{q}_n)$

$$
\lambda = \sum_{i=0}^{n-1} \log \left(1 + \frac{m_{i,i+1}^2}{m_0^2} \right) \sim \sum_{i=0}^{n-1} \log \left(\frac{m_{i,i+1}^2}{m_0^2} \right)
$$

 $\lambda \propto$ number of produced hadrons

ˇ

Perturbative effects

We expect effects of $N_C = 3 < \infty$ also on the perturbative level.

We want a full-colour parton shower, but this probably requires an amplitude-level parton shower scheme, which can become very messy.

Instead modify what we have: the dipole shower.

Amend it with dipole reconnections between each emission.

Let's put some swing into the the dipole shower!

ˇ

The Dipole Swing

 \triangleright Assign a colour index (1-9) to each dipole

- \triangleright Dipoles connected with a gluon must have $c_i \neq c_j$
- \triangleright Only dipoles with the same index may swing
- \blacktriangleright Let's Swing

ˇ

The Dipole Swing

Assign a colour index (1-9) to each dipole

- \blacktriangleright Dipoles connected with a gluon must have $c_i \neq c_j$
- \triangleright Only dipoles with the same index may swing
- **I** Let's Swing

ˇ

The Dipole Swing

- Assign a colour index (1-9) to each dipole
- Dipoles connected with a gluon must have $c_i \neq c_j$
- \triangleright Only dipoles with the same index may swing
- \blacktriangleright Let's Swing

ˇ

The Dipole Swing

- Assign a colour index (1-9) to each dipole
- Dipoles connected with a gluon must have $c_i \neq c_j$
- Only dipoles with the same index may swing

 \blacktriangleright Let's Swing

ˇ

The Dipole Swing

- Assign a colour index (1-9) to each dipole
- Dipoles connected with a gluon must have $c_i \neq c_j$
- Only dipoles with the same index may swing
- Let's Swing

Colour reconnections [The dipole swing](#page-18-0) [The Swing in Angantyr](#page-36-0)

ˇ

The Dipole Swing

- Assign a colour index (1-9) to each dipole
- Dipoles connected with a gluon must have $c_i \neq c_j$
- Only dipoles with the same index may swing
- \blacktriangleright Let's Swing both ways

The dipole emissions are limited by the dipole mass (cf. angular ordering)

The dipole shower is ordered in transverse momentum, *k*[⊥]

The distribution of the *next* emission is given by

ˇ

$$
\frac{d\mathcal{P}}{dk_{\perp}^2} = \frac{\alpha_S}{k_{\perp}^2} \sum_i \int dz P_i(z) \times \Delta(k_{\perp \text{max}}^2, k_{\perp}^2)
$$

where ∆ is the no-emission probability (Sudakov form factor)

The dipole emissions are limited by the dipole mass (cf. angular ordering)

The dipole shower is ordered in transverse momentum, *k*[⊥]

The distribution of the *next* emission is given by

ˇ

$$
\frac{d\mathcal{P}}{dk_{\perp}^2} = \frac{\alpha_S}{k_{\perp}^2} \sum_i \int dz P_i(z) \times \Delta(k_{\perp \text{max}}^2, k_{\perp}^2)
$$

where ∆ is the no-emission probability (Sudakov form factor) Add the probability that a dipole may swing

$$
\frac{d\mathcal{P}_{\text{swing}}}{dk_{\perp}^2} = \lambda \frac{m_{12}^2 m_{34}^2}{m_{14}^2 m_{32}^2} \times \Delta_{\text{swing}}(k_{\perp\text{max}}^2, k_{\perp}^2)
$$

where λ is a strength parameter

$$
P_{\text{swing}} = \lambda \frac{m_{12}^2 m_{34}^2}{m_{14}^2 m_{32}^2}
$$

- \triangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \triangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
P_{\text{swing}} = \lambda \frac{m_{14}^2 m_{32}^2}{m_{12}^2 m_{34}^2}
$$

- \triangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \triangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
\blacktriangleright \ \ P_{\text{swing}} = \lambda \frac{m_{12}^2 m_{34}^2}{m_{14}^2 m_{32}^2}
$$

- \triangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \triangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
q_1 \longrightarrow \bar{q}_2
$$

$$
P_{\text{swing}} = \lambda \frac{m_{12}^2 m_{34}^2}{m_{14}^2 m_{32}^2}
$$

- \blacktriangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \triangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
P_{\text{swing}} = \lambda \frac{m_{14}^2 m_{32}^2}{m_{12}^2 m_{34}^2}
$$

- \blacktriangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \triangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
q_1 \longrightarrow \bar{q}_2
$$

$$
P_{\text{swing}} = \lambda \frac{m_{12}^2 m_{34}^2}{m_{14}^2 m_{32}^2}
$$

- \blacktriangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \triangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
P_{\text{swing}} = \lambda \frac{m_{14}^2 m_{32}^2}{m_{12}^2 m_{34}^2}
$$

- \blacktriangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \blacktriangleright Prefers small mass dipoles giving less radiation
- \blacktriangleright ... and shorter strings and fewer hadrons

$$
\blacktriangleright \ \ P_{\text{swing}} = \lambda \frac{m_{14}^2 m_{32}^2}{m_{12}^2 m_{34}^2}
$$

- \blacktriangleright The weighted average of the radiation from the two dipole pair configuration emulates quadrupole radiation.
- \blacktriangleright Prefers small mass dipoles giving less radiation
	- ... and shorter strings and fewer hadrons

Small effects in e^+e^- (after retuning)

ˇ

- \blacktriangleright Enables PYTHIA8 to generate HI events.
- \triangleright Glauber modelling with fluctuations in the nucleon wavefunctions.
- ▶ Special treatment of *secondary* nucleon sub-collisions
- \triangleright Basically stacking Pythia8 pp collisions on top of each other
- \blacktriangleright The main assumption is that strings are actually formed

- \blacktriangleright Enables PYTHIA8 to generate HI events.
- \triangleright Glauber modelling with fluctuations in the nucleon wavefunctions.
- ▶ Special treatment of *secondary* nucleon sub-collisions
- \triangleright Basically stacking Pythia8 pp collisions on top of each other
- \blacktriangleright The main assumption is that strings are actually formed and THERE IS NO QGP

- \blacktriangleright Enables PYTHIA8 to generate HI events.
- \triangleright Glauber modelling with fluctuations in the nucleon wavefunctions.
- ▶ Special treatment of *secondary* nucleon sub-collisions
- Basically stacking Pythia8 pp collisions on top of each other
- \triangleright The main assumption is that strings are actually formed and THERE IS NO QGP

▶ Collective effect are generated through *string interactions* (Rope model, shoving model and *Swing*)

Basic assumption 1: There is no *medium*, only quarks and gluons with varying *p*⊥.

Basic assumption 2: The interesting DoF are not the partons themselves but the colour field (*dipoles*) between them.

Basic requirement 1: The momentum-space picture of dipole swings needs to be amended with a space-time picture.

Basic assumption 1: There is no *medium*, only quarks and gluons with varying *p*⊥.

Basic assumption 2: The interesting DoF are not the partons themselves but the colour field (*dipoles*) between them.

Basic requirement 1: The momentum-space picture of dipole swings needs to be amended with a space-time picture.

Basic assumption 1: There is no *medium*, only quarks and gluons with varying *p*⊥.

Basic assumption 2: The interesting DoF are not the partons themselves but the colour field (*dipoles*) between them.

Basic requirement 1: The momentum-space picture of dipole swings needs to be amended with a space-time picture.

Basic assumption 1: There is no *medium*, only quarks and gluons with varying *p*⊥.

Basic assumption 2: The interesting DoF are not the partons themselves but the colour field (*dipoles*) between them.

Basic requirement 1: The momentum-space picture of dipole swings needs to be amended with a space-time picture.

Basic assumption 1: There is no *medium*, only quarks and gluons with varying *p*⊥.

Basic assumption 2: The interesting DoF are not the partons themselves but the colour field (*dipoles*) between them.

Basic requirement 1: The momentum-space picture of dipole swings needs to be amended with a space-time picture.

Basic requirement 2: Hard dipoles (in jets) and soft dipoles (in *the medium*) must be treated democratically. (c.f. *parallel frame* in S. Charkraborty's talk)

- \triangleright No Swing \rightarrow normal (NP) colour reconnection
- \triangleright No Jets \rightarrow hadron correlations
- \triangleright No AA \rightarrow pp@7TeV
- \triangleright No data \rightarrow compare w vs. w/o (re-tuned)

- \triangleright No Swing \rightarrow normal (NP) colour reconnection
- \triangleright No Jets \rightarrow hadron correlations
- \triangleright No AA \rightarrow pp@7TeV
- \triangleright No data \rightarrow compare w vs. w/o (re-tuned)

 \triangleright No Swing \rightarrow normal (NP) colour reconnection

- \triangleright No Jets \rightarrow hadron correlations
- \triangleright No AA \rightarrow pp@7TeV
- \triangleright No data \rightarrow compare w vs. w/o (re-tuned)

- \triangleright No Swing \rightarrow normal (NP) colour reconnection
- \triangleright No Jets \rightarrow hadron correlations
- \triangleright No AA \rightarrow pp@7TeV
- \triangleright No data \rightarrow compare w vs. w/o (re-tuned)

- \triangleright No Swing \rightarrow normal (NP) colour reconnection
- \triangleright No Jets \rightarrow hadron correlations
- \triangleright No AA \rightarrow pp@7TeV
- \triangleright No data \rightarrow compare w vs. w/o (re-tuned)

- \triangleright No Swing \rightarrow normal (NP) colour reconnection
- \triangleright No Jets \rightarrow hadron correlations
- \triangleright No AA \rightarrow pp@7TeV
- \triangleright No data \rightarrow compare w vs. w/o (re-tuned)

[The Swing in Angantyr](#page-36-0)

Pythia MPI and Colour (Re-)connections

[PRD**36**(1987)2019]

[Swing](#page-0-0) 15 Leif Lönnblad [Lu](#page-58-0)[nd](#page-0-0) [Univ](#page-60-0)ersity Company and Lund University

[The Swing in Angantyr](#page-36-0)

Pythia MPI and Colour (Re-)connections

[The Swing in Angantyr](#page-36-0)

Pythia MPI and Colour (Re-)connections

In the PYTHIA8 MPI machinery every additional scatter will naively stretch out new colour-strings.

Pythia MPI and Colour (Re-)connections

In the PYTHIA8 MPI machinery every additional scatter will naively stretch out new colour-strings.

If all of them can stretch all the way back to the proton remnants soft multiplicity increases too much

To be able to describe observables such as $\langle p_+\rangle(n_{ch})$ we need (a lot of) colour (re-)connections.

Pythia MPI and Colour (Re-)connections

In the PYTHIA8 MPI machinery every additional scatter will naively stretch out new colour-strings.

If all of them can stretch all the way back to the proton remnants soft multiplicity increases too much

To be able to describe observables such as $\langle p_+\rangle(n_{ch})$ we need (a lot of) colour (re-)connections.

Pythia MPI and Colour (Re-)connections

In the PYTHIA8 MPI machinery every additional scatter will naively stretch out new colour-strings.

If all of them can stretch all the way back to the proton remnants soft multiplicity increases too much

To be able to describe observables such as $\langle p_+\rangle(n_{ch})$ we need (a lot of) colour (re-)connections.

Charged hadron correlations

Swing

Hadron *p*[⊥] **ratios**

The dipole swing

Outlook

- \triangleright Colour reconnections will affect jets
- \triangleright Swing will affect the perturbative evolution of jets
- \triangleright With a proper space-time picture we can investigate quenching-like effect in pp, p*A* and *AA* with Angantyr.

Thanks!

Vetenskapsrådet

MCnet

European Research Council Established by the European Commission

Tinut and Alice *Mallenberg*
Foundation

Colour Reconnections

- \blacktriangleright Sjöstrand et al., Phys. Rev. D36 (1987) 2019
- Gustafson et al., Z. Phys. C64 (1994) 659-664
- ▶ Sjöstrand et al., Phys.Rev.Lett. 72 (1994) 28-31
- ► Edin et al., Phys.Lett. B366 (1996) 371-378
- ▶ Lönnblad, Z.Phys. C70 (1996) 107-114
- ▶ Gieseke et al., JHEP 1811 (2018) 149

[Swing](#page-0-0) 20 Leif Lönnblad [Lu](#page-60-0)[nd](#page-0-0) [Univ](#page-60-0)ersity