Measurement of inclusive jet production in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR experiment

Robert Licenik (*Nuclear Physics Institute of the CAS*) for the STAR Collaboration

The 10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions - June 1, 2020

Motivation

- High-p_T hadron suppression extensively measured at RHIC and the LHC
- **Reconstructed jets** broader exploration of jet quenching mechanisms
- Different jet measurement channels: inclusive, coincidence, heavy flavor
- RHIC vs. LHC
- This talk:

- First inclusive charged-jet measurements in Au+Au at √s_{NN} = 200 GeV {arXiv:2006.00582}
- First look at fully-reconstructed inclusive jets in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

STAR Experiment

This analysis utilizes:

• Time Projection Chamber (TPC)

- Charged-particle identification and precise momentum reconstruction
- Barrel Electromagnetic Calorimeter (BEMC)
 - Detection of neutral and charged particle energy
 - Fast detector used for triggering

• Vertex Position Detector (VPD)

- Minimum-bias trigger
- Fast detector for pile-up event rejection

Full azimuthal coverage; $|\eta| < 1$

Dataset and Analysis

STAR

Data sample: Au+Au at $\sqrt{s_{NN}}$ = 200 GeV:

- 2011 minimum-bias, $L_{int} = 6 \ \mu b^{-1}$ (charged jets)
- 2014 minimum-bias and BEMC-triggered, $L_{int} = 5.2 \text{ nb}^{-1}$ (full jets)

Centrality: Determined from charged-track multiplicity within $|\eta_{\text{track}}| < 0.5$

- Central (0-10%)
- Peripheral (60-80%)

Event selection:

• $|V_z^{\text{TPC}}| < 30 \text{ cm}, |V_z^{\text{TPC}} - V_z^{\text{VPD}}| < 3 \text{ cm}$

Primary track selection:

- $|\eta_{\text{track}}| < 1$
- Number of TPC hits > 14; ratio of used to maximum possible TPC hits > 0.52
- DCA < 1 cm

p+p reference: PYTHIA 6.428, Perugia 2012, STAR tune

Jet Reconstruction

STAR

- Charged jets: charged tracks from TPC
- Full jets: charged tracks from TPC + neutral energy from BEMC clusters, corrected for hadronic energy deposition in BEMC

- Anti- $k_{\rm T}$ algorithm, R = 0.2, 0.3, 0.4
- Fiducial acceptance cut: $|\eta_{iet}| < 1 R$
- Constituents:
 - charged: $0.2 < p_{T} < 30.0 \text{ GeV/}c$
 - neutral: $0.2 < E_{T} < 30.0 \text{ GeV}$

• Inclusive jet analysis: two-step correction (event-by-event, ensemble)

Inclusive Charged Jet Spectrum Analysis: Event-by-event Step

- Area cut: $A_{iet} \ge 0.07 / 0.2 / 0.4$ sr for R = 0.2 / 0.3 / 0.4
- Approximate jet-wise **background subtraction** (FastJet)

$$p_{\mathrm{T,jet}}^{\mathrm{reco,i}} = p_{\mathrm{T,jet}}^{\mathrm{raw,i}} - \rho \cdot A_{\mathrm{jet}}^{\mathrm{i}}$$
, where $\rho = \mathrm{median} \left\{ \frac{p_{\mathrm{T,jet}}^{\mathrm{raw,i}}}{A_{\mathrm{jet}}^{\mathrm{i}}} \right\}$

- Combinatorial jets suppressed by imposing a cut on leading hadron transverse momentum (p_{T.lead})
 - Imposes bias on jet fragmentation and breaks collinear safety

 \rightarrow as low threshold as possible ($p_{T,lead} > 5 \text{ GeV}/c$)

• Measure bias using $p_{T,lead} > 7 \text{ GeV/}c$

Inclusive Charged Jet Spectrum Analysis: Ensemble Step

- Unfolding: iterative Bayesian and SVD (systematic uncertainty estimation)
- Factorize background fluctuations and detector effects
- **Background fluctuations:** embed different jet-like objects
 - Variations of fragmentation pattern: Single Particle (SP), PYTHIA light-quark jet (PYIq)

$$\delta p_{\mathrm{T}} = p_{\mathrm{T,jet}}^{\mathrm{reco,ch}} - p_{\mathrm{T}}^{\mathrm{emb}}$$

Robert Licenik, Hard Probes 2020

STAR

STAR

Inclusive Charged Jet Spectrum Analysis: Ensemble Step

- Unfolding: iterative Bayesian and SVD (systematic uncertainty estimation)
- Factorize background fluctuations and detector effects

Unbiased Region Determination

Unbiased region estimated from the ratio of yields with

Charged Jet R_{CP}

STAR

- Strong suppression of central vs peripheral, weak p_T-dependence
- Weak R dependence

R = 0.2

Charged Jet R_{CP}: Comparison with LHC

- Strong suppression of central vs peripheral, weak p_τ-dependence
- Similar level of suppression as RHIC & LHC inclusive hadron R_{CP} in the same p_{T} region, possibly different p_{T} -dependence
- Suppression level and p_{T} -dependence consistent with LHC jet measurements at higher $p_{T,jet}$ R = 0.2

Robert Licenik, Hard Probes 2020

Charged Jet R_{AA}

- *p+p* baseline: PYTHIA 6.428, Perugia 2012, STAR tune
- Significant jet yield suppression in central collisions

Charged Jet R_{AA}: Comparison to Inclusive Hadrons

 Yield suppression consistent with inclusive hadron suppression in central Au+Au collisions at RHIC

STAR ch. hadrons: PRL 91.172302 (2003) PHENIX ch. hadrons: PRC 69, 034910 (2004) PHENIX π^0 : PRC 87, 034911 (2013)

Charged Jet R_{AA}: Model Comparison

Only ~unbiased data points shown

- All calculations consistent with our measurement
- Models predict similar R_{AA}: current precision does not enable us to discriminate between models

Transverse Momentum Shift

- No R-dependence observed in inclusive jet production
- Energy loss consistent with semi-inclusive results at RHIC

12₁

10

8

- Indication of smaller energy loss at RHIC than the LHC -∆ p_{T,jet} [GeV/c]
- See also talk by Nihar Sahoo tomorrow (June 2, 11:20)

Medium-induced Jet Broadening

- **Peripheral**: No observed modification of transverse jet profile compared to p+pcollision reference (< 1 for both HERWIG and PYTHIA)
- **Central**: Dispersion of models is greater in this observable than for R_{AA}

- strong physical motivation to improve systematic uncertainties and study full jets Robert Licenik, Hard Probes 2020

TAR

Outlook: Inclusive Full Jet p_{T} Spectra

Raw inclusive full-jet spectra reconstructed from large-statistics BEMC-triggered dataset R = 0.2

 Increase in kinematic reach for future STAR inclusive jet results

R = 0.4

Summary

- First measurement of **inclusive charged jet** distributions in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}$
- Significant yield suppression in central Au+Au with respect to peripheral Au+Au (data) and p+p (PYTHIA) collisions
- Magnitude of suppression similar to inclusive hadrons (RHIC & LHC) and jets at the LHC
- No evidence of medium-induced broadening for R < 0.4
- **Quenching** models largely **consistent** with inclusive jet measurements but opportunities for higher precision
- High-statistics measurements of **fully-reconstructed jets** in Au+Au collisions **in progress**

Acknowledgments: This research was funded by the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic.

Jet Area Cut

Jet Reconstruction Efficiency

• Estimated from comparing matched parton- and detector-level jets generated by PYTHIA6

• Negligible difference on parton type (u/g)

• Dominated by TPC tracking efficiency

• Variations used for systematic uncertainty estimation

Background Description - Parametrized Model

- Combines simple Boltzmann-distributed independent emission with hard jets fragmentation based on PYTHIA simulations
- Background well-described by statistical phase space, consistent with previous event-by-event E_T fluctuation and hadron+jet mixed-event measurement

STAR

Outlook: Inclusive Full Jet p_T Spectra - peripheral

STAR

- Raw inclusive full-jet spectra reconstructed from large-statistics BEMC-triggered dataset
 ^{10²}/₁₀ Au+Au (Sin = 200 Ge Peripheral (60-80%)
- Great potential for increase in kinematic reach for future STAR inclusive jet results

