PHENIX Results on Nuclear Modification of Hadron Production in Small and Large Systems

Axel Drees, Hard Probes 2020, June, Port Jefferson, NY

- Introduction
- Heavy Ion Collisions Cu+Au and U+U
- Small systems p+Al, p+Au, d+Au, ³He+Au
- Summary

Nuclear Modification of Hadron Production

- A+A collision compared to p+p
- High p_T region
 - Production dominated by jet fragmentation.
 - Jet quenching → suppression of hadron yields.
- Low p_T region
 - Soft particle production.
 - Collective expansion (radial flow) → enhancement of hadron yields.
 - Strangeness enhancement → change in particle composition

Rich information about dynamics of heavy ion collisions

Hadron Spectra with the PHENIX Detector

Key central arm detector systems

Drift Chambers → charged particles

■ EMCal → photons

• TOF $\rightarrow \pi^{\pm}, K^{\pm}, p, \overline{p}$

Reconstruct Particle Decays

$$lacksquare$$
 π^0 , $\eta o \gamma \gamma$

$$\bullet \quad \omega \ \to \pi^0 \gamma$$

•
$$K_s^0 \rightarrow \pi^0 \pi^0$$

• $K^* \rightarrow \pi K$

- p+p, Au+Au
- Cu+Au, U+U
- p+Au, d+Au, ³He+Au

 $2 \times \Delta \varphi = 90^{\circ}$

Comparing Different Systems with N_{part} or N_{coll}

Reference Spectra from p+p Collisions

Spectra for many hadrons over broad p_T range

Meson Production in U+U at 192 GeV

Compare to p+p and different centrality selections using nuclear modification factor:

$$R_{AB}(p_T, N_{part}) = \frac{\left(\frac{d^2N}{dp_t}\right)_{AB}}{N_{coll}\left(\frac{d^2N}{dp_t}\right)_{pp}}$$

Meson R_{AA} for Central U+U Collisions

PHENIX: arXiv:2005.14686

- R_{AA}(p_T,N_{part}) qualitatively consistent between U+U and Au+Au
 - Common suppression for mesons $(\pi, K, \eta, K^*, \phi)$ at high p_T
 - Nearly constant R_{AA} value that is lowest for central collisions
 - Less suppression at low p_T
 - K*,φ less suppressed than π⁰,η
 - **K***,φ reach common suppression at higher p_T

Meson R_{AR} for Central Cu+Au Collisions

PHENIX: Phys. Rev. C98 (2018) 054903

- R_{AA}(p_T,N_{part}) qualitatively consistent between U+U, Au+Au, Cu+Au
 - Similar centrality dependent suppression for π , η , K^* , ϕ
 - Mass/flavor dependence at low pt
 - Increase of R_{AA} for $p_T>10$ GeV/c

Meson Modification at High p_T

- Universal centrality dependence of high p_T meson suppression
 - π , K_s , η , ω , (K^*, ϕ) same suppression
 - At same N_{part} Cu+Cu, Cu+Au, Au+Au and U+U show same suppression

Universal high p_T suppression with N_{part} for light and strange quark mesons

Jet fragmentation not modified or modified equally

Meson Modification at Low p_T

- Collison System Dependence
 - Cu+Cu to U+U
 - Common modification
 - with N_{part}

- Mass dependence
 - Cu+Au & U+U
 - K*, φ less modified than π, η

Low p_T R_{AA}: mass ordering and universal N_{part} dependence

Fireball dynamics and hadroniztion similar Meson modification mass driven Consistent with radial flow of hadrons

Low p_T R_{AA} Baryons vs Mesons

- Common features of mesons and baryons
 - Universal trend with N_{part} independent of collision system
 - Peak in R_{AA} around 2 -3 GeV/c
- Differences between mesons and baryons
 - At same mass baryons (p/\overline{p}) are enhanced compare to mesons (K^*, ϕ)

Low p_T R_{AA} peak at 2-3 GeV/c for mesons and baryons

Mass not only factor in modification

Possibly consistent with partonic flow

Hadron Modification in Small Systems

Anisotropy v₂,v₃ consistent with hydrodynamic expansion

- **▶** Small systems p+Au, d+Au, ³He+Au
 - Benchmark for Cold Nuclear Matter effects
- Search for Hot Matter Effects
 - If v₂, v₃ is evidence for hydronamic behavior there needs to be also radial flow!
 - Is jet modification in d+Au related to energy loss, or driven by proton size fluctuation etc.?

Jets suppressed in central, but enhanced in peripheral collisions.

Hardon Modification in d+Au Collisions

Mesons:

- Similar shape over full p_T range for fixed centrality
- For 0-20%

 Cronin peak ~ 4 GeV/c

 Suppression at high p_T
- For 60-80%

 Consistent with unity > 2 GeV/c

Protons

- For 0-20%

 Cronin peak at ~ 3 GeV/c

 Comparable to fix target exp.
- For 60-80%

 Consistent with mesons

Hadron systematics different from heavy ion collisions

Meson Modification in Small Systems

p_(GeV/c)

- High $p_T > 8 \text{ GeV/c}$

 - π^0 suppressed in 0-20%
 - π^0 enhanced in 60-80%
- Low $p_T < 6 \text{ GeV/c}$
 - π^0 and ϕ similar R_{AB}
 - For 0-20%

 Cronin peak at ~4 GeV/c $R_{pAu} > R_{dAu} > R_{HeAu}$ Ordering with system size
 - For 60-80% $R_{pAu} \sim R_{dAu} \sim R_{HeAu}$ Consistent with unity

Meson systematics different from heavy ion collisions

Scaling uncertainty from p+p - 9.7%

p_(GeV/c)

Scaling uncertainty from p+p - 9.7%

High $p_T \pi^0$ Modification

- Model independent conclusions for the mechanism for high p_T nuclear modification in small systems:
 - mostly independent interaction of each projectile
 - not driven thickness of matter traversed by projectile

Consequences of high-x proton size fluctuations in small collision systems at $\sqrt{s_{NN}} = 200 \text{ GeV}$

D. McGlinchey, ¹ J. L. Nagle, ¹ and D. V. Perepelitsa²

¹University of Colorado, Boulder, Colorado 80309, USA

²Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

(Received 5 April 2016; published 22 August 2016)

- $p_T(\pi^0) = 0.7 p_T^{jet} = 0.7 \times 100 \text{ GeV} \times x_p$
- $\langle R_{AB} \rangle \approx R_{AB}(p_T)$
- N_{Coll}/N_{prat}^{proj} from PHENIX Glauber

Centrality dependence of π^0 suppression consistent fluctuating proton size

Summary

- PHENIX R_{AA} for hadrons in Cu+Cu, Cu+Au, U+U, Au+Au at 200 GeV
 - $\hbox{ \begin{tabular}{ll} Universal high p_T suppression with N_{part} for all measured hadrons } \\ \hbox{ \end{tabular} Jet fragmentation not modified or modified equally for mesons}$
 - Low p_T meson R_{AA} exhibit mass ordering (small at low mass) and common N_{part} dependence

 Similar fireball dynamics and hadroniztion

 Mass driven modification consistent with radial flow of hadrons
 - $\hbox{ Low p_T R_{AA} for proton larger than for similar mass mesons (ϕ,K^*) } \\ \hbox{ Mass not only factor in modification, possibly indicating partonic flow}$
- Hadron modification in small systems: p+Al, p+Au, d+Au, ³He+Au
 - Peripheral collisions: hadron R_{AB} consistent with unity for $p_T > 2$ GeV/c No evidence of nuclear modification
 - Central collisions:

Cronin peak ~ 4 GeV/c, system ordering $R_{pAu} > R_{dAu} > R_{HeAu}$, larger for baryons

Connection to radial flow? No evident ...

Suppression for $p_T > 8$ GeV, independent for each projectile, not driven by target thickness

Connection to energy loss? Not easy to see ..

Backup Slides

Meson Extraction From Heavy Ion Collisions

 $2.5 \ 10^7$

Lifetime [fm/c]

46

stable

4.16

23

 $2.7 \ 10^{13}$

 $1.6 \ 10^{5}$

Comparing Different Small Systems

Meson Production in Cu+Au at 200 GeV

PHENIX: Phys. Rev. C98 (2018) 054903

Compare to p+p and different centrality selections using nuclear modification factor:

$$R_{AB}(p_T, N_{part}) = \frac{\left(\frac{d^2N}{dp_t}\right)_{AB}}{N_{coll}\left(\frac{d^2N}{dp_t}\right)_{pp}}$$

Full Centrality Dependence of Proton R_{AA}

N_{part} Dependence of Hadron R_{AA}

N_{part} Dependence of Hadron R_{AA}

Small System Low $p_T < R_{AA} >$

- (i) Different mechanism at high/low p_T
- (ii) Driven by thickness of traversed material at low p_T
- (iii) Transition between 5-7 GeV/c