

Jet Quenching in Relativistic Heavy-Ion Collisions

HEPIC - Instituto de Física da USP

Fabio M. Canedo(fabio.canedo@usp.br) Marcelo G. Munhoz J. Noronha-Hostler J. Noronha

May 2nd 2020

10th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions

Motivation

Jet Quenching. Model used:

 JEWEL[arXiv: 1212.1599, arXiv: 1311.0048];

Goal

- Realistic medium evolution
- Differential predictions
- Multiparticle final state

- ∢ 🗇 ト

Jet Quenching

Jet Quenching in Relativistic Heavy-Ion Collis

≣⇒

Jet Quenching

Motivation

Jet Quenching. Model used:

 JEWEL[arXiv: 1212.1599, arXiv: 1311.0048];

Goal

- Realistic medium evolution
- Differential predictions
- Multiparticle final state

< 🗇 🕨

< ⊒ >

v-USPhydro

v-USPhydro[arXiv: 1305.1981, arXiv: 1406.3333]

- smoothed particle hydrodynamics(Lagrangian method);
- 2+1 dimensions;
- shear viscosity $(\frac{\eta}{s} = 0.047);$

The simulation

	Scenarios	
	Initial conditions	Evolution
Glauber+Bjorken	Glauber	
$T_RENTO+Bjorken$	T _R ENTo ¹	Bjorken Expansion
MC-KLN+Bjorken	MC-KLN ²	
MC-KLN +v-USPhydro	MC-KLN	2 1 v USPhydro codo
$T_{R}ENTo$ +v-USPhydro	T _R ENTo	

 $^{1}arXiv: 1412.4708$ $^{2}arXiv: nucl-th/0611017$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

Jet Observables

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;
- v_n;
- x_J;

Following arXiv: 1509.07334, we generalize:

$$v_n^{\mathrm{ch\, jet}}(p_T^{\mathrm{ch\, jet}}) = \frac{\pi}{4} \frac{N_{\mathrm{in}}(p_T^{\mathrm{ch\, jet}}) - N_{\mathrm{out}}(p_T^{\mathrm{ch\, jet}})}{N_{\mathrm{in}}(p_T^{\mathrm{ch\, jet}}) + N_{\mathrm{out}}(p_T^{\mathrm{ch\, jet}})}$$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日< の</p>

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

▲□▶ < @▶ < ≧▶ < ≧▶ 줄|= < • < </p> • <lp>• <lp>

May 2nd 2020

Jet Quenching in Relativistic Heavy-Ion Collis

Jet Observables

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;

F.M. Canedo

- v_n;
- x_J;

Following arXiv: 1509.07334, we generalize:

$$v_2^{\rm ch\,jet}(p_T^{\rm ch\,jet}) = \frac{\pi}{4} \frac{N_{\rm in}(p_T^{\rm ch\,jet}) - N_{\rm out}(p_T^{\rm ch\,jet})}{N_{\rm in}(p_T^{\rm ch\,jet}) + N_{\rm out}(p_T^{\rm ch\,jet})}$$

May 2nd 2020

Jet Quenching in Relativistic Heavy-Ion Collis

Jet Observables

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;

F.M. Canedo

- v_n;
- x_J;

Following arXiv: 1509.07334, we generalize:

$$v_{3}^{\mathrm{ch\, jet}}(p_{T}^{\mathrm{ch\, jet}}) = \frac{\pi}{4} \frac{N_{\mathrm{in}}(p_{T}^{\mathrm{ch\, jet}}) - N_{\mathrm{out}}(p_{T}^{\mathrm{ch\, jet}})}{N_{\mathrm{in}}(p_{T}^{\mathrm{ch\, jet}}) + N_{\mathrm{out}}(p_{T}^{\mathrm{ch\, jet}})}$$

PbPb $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ anti-kt R=0.2 $|\eta|<0.8$ 40 GeV/c $<{\rm p_T}<60~{\rm GeV/c}$ arXiv: 1807.06854

$$g = \frac{\sum_{i} p_{i}^{T} \Delta R_{i}}{p_{i}^{T}}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

PbPb $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ anti-kt R=0.2 $|\eta|<0.8$ 40 GeV/c $<{\rm p_T}<60~{\rm GeV/c}$ arXiv: 1807.06854

$$g = \frac{\sum_{i} p_{i}^{T} \Delta R_{i}}{p_{I}^{T}}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

PbPb $\sqrt{s_{\rm NN}}=2.76~{\rm TeV}$ anti-kt R=0.2 $|\eta|<0.8$ 40 GeV/c $<{\rm p_T}<60~{\rm GeV/c}$ arXiv: 1807.06854

$$g = \frac{\sum_{i} p_{i}^{I} \Delta R_{i}}{p_{I}^{T}}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ anti-kt R = 0.2 $|\eta| < 0.8$ 40 GeV/c < PT < 60 GeV/c arXiv: 1807.06854

$$g = \frac{\sum_{i} p_{i}^{T} \Delta R_{i}}{p_{j}^{T}}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ anti-kt R = 0.2 $|\eta| < 0.8$ 40 GeV/c < PT < 60 GeV/c arXiv: 1807.06854

$$g = \frac{\sum_{i} p_{i}^{T} \Delta R_{i}}{p_{J}^{T}}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

 $\begin{array}{l} \mbox{PbPb } 0.10\% \ \sqrt{s_{\rm NN}} = 2.76 \mbox{TeV} \ \mbox{anti-kt} \ R = 0.2 \\ |\eta| < 0.8 \\ \mbox{40 GeV}/c < \mbox{pt} < 60 \ \mbox{GeV}/c \\ \mbox{arXiv: 1807.06854} \end{array}$

$$p_D^T = \frac{\sqrt{\sum_i p_i^{T^2}}}{p_j^T}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

 $\begin{array}{l} \mbox{PbPb } 0.10\% \ \sqrt{s_{\rm NN}} = 2.76 \mbox{TeV} \ \mbox{anti-kt} \ R = 0.2 \\ |\eta| < 0.8 \\ \mbox{40 GeV}/c < \mbox{pt} < 60 \ \mbox{GeV}/c \\ \mbox{arXiv: 1807.06854} \end{array}$

$$p_D^T = \frac{\sqrt{\sum_i p_i^{T^2}}}{p_J^T}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

 $\begin{array}{l} \mbox{PbPb } 0.10\% \ \sqrt{s_{\rm NN}} = 2.76 \mbox{TeV} \ \mbox{anti-kt} \ R = 0.2 \\ |\eta| < 0.8 \\ \mbox{40 GeV}/c < \mbox{pt} < 60 \ \mbox{GeV}/c \\ \mbox{arXiv: 1807.06854} \end{array}$

$$p_D^T = \frac{\sqrt{\sum_i p_i^{T^2}}}{p_j^T}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

 $\begin{array}{l} \mbox{PbPb } 0.10\% \ \sqrt{s_{\rm NN}} = 2.76 \mbox{TeV} \ \mbox{anti-kt} \ R = 0.2 \\ |\eta| < 0.8 \\ \mbox{40 GeV}/c < \mbox{pt} < 60 \ \mbox{GeV}/c \\ \mbox{arXiv: 1807.06854} \end{array}$

$$p_D^T = \frac{\sqrt{\sum_i p_i^{T^2}}}{p_J^T}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

 $\begin{array}{l} \mbox{PbPb } 0.10\% \ \sqrt{s_{\rm NN}} = 2.76 \mbox{TeV} \ \mbox{anti-kt} \ R = 0.2 \\ |\eta| < 0.8 \\ \mbox{40 GeV}/c < \mbox{pt} < 60 \ \mbox{GeV}/c \\ \mbox{arXiv: 1807.06854} \end{array}$

$$p_D^T = \frac{\sqrt{\sum_i p_i^{T^2}}}{p_j^T}$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

anti-kt R = 0.4 $|\eta| < 0.8$ $40\,\mathrm{GeV/c} < \mathrm{p_T} < 60\,\mathrm{GeV/c}$

arXiv: 1702.00804

Jet Quenching in Relativistic Heavy-Ion Collis

anti-kt R = 0.4 $|\eta| < 0.8$ $40\,\mathrm{GeV/c} < \mathrm{p_T} < 60\,\mathrm{GeV/c}$

arXiv: 1702.00804

Jet Quenching in Relativistic Heavy-Ion Collis

anti-kt R = 0.4 $|\eta| < 0.8$ $40 \,\mathrm{GeV/c} < \mathrm{p_T} < 60 \,\mathrm{GeV/c}$

arXiv: 1702.00804

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

anti-kt R = 0.4 $|\eta| < 0.8$ $40 \,\mathrm{GeV/c} < \mathrm{p_T} < 60 \,\mathrm{GeV/c}$

arXiv: 1702.00804

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

anti-kt R = 0.4 $|\eta| < 0.8$ $40 \,\mathrm{GeV/c} < \mathrm{p_T} < 60 \,\mathrm{GeV/c}$

arXiv: 1702.00804

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

▶ ◀ ☰ ▶ 三|☱ ∽ ९... Mav 2nd 2020 8 / 15

PbPb $\sqrt{s_{\rm NN}} = 2.76~{\rm TeV}$ anti-kt R = 0.4 $|\eta| < 0.8$ arXiv: 1509.07334 arXiv: 1306.6469

Jet Quenching in Relativistic Heavy-Ion Collis

 $\begin{array}{l} {\sf PbPb} \ \sqrt{s_{\rm NN}} = 2.76 \ {\rm TeV} \ {\sf anti-kt} \ R = 0.4 \\ {\scriptstyle |\eta| < 0.8} \\ {\it arXiv: 1509.07334} \\ {\it arXiv: 1306.6469} \end{array}$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

PbPb $\sqrt{s_{\rm NN}} = 2.76~{\rm TeV}$ anti-kt R = 0.4 $|\eta| < 0.8$ arXiv: 1509.07334 arXiv: 1306.6469

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

<mark>ま▶ ∢ 돌▶ - 돌| = ∽</mark> へ (~ May 2nd 2020 9 / 15

PbPb $\sqrt{s_{\rm NN}} = 2.76~{\rm TeV}$ anti-kt R = 0.4 $|\eta| < 0.8$ arXiv: 1509.07334 arXiv: 1306.6469

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

★ ▲ 클 ▶ 클 ⊨ ∽ ۹ (~ May 2nd 2020 9 / 15

PbPb $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ anti-kt R=0.4 $|\eta|<0.8$ arXiv: 1509.07334 arXiv: 1306.6469

Jet Quenching in Relativistic Heavy-Ion Collis

★ ▲ 클 ▶ 클 ⊨ ∽ ۹ (~ May 2nd 2020 9 / 15

PbPb $\sqrt{s_{\rm NN}}=2.76\,{\rm TeV}$ anti-kt R=0.4 $|\eta|<0.8$ arXiv: 1509.07334 arXiv: 1306.6469

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

▶ < 글 ▶ 글|= ∽ ९ (~ May 2nd 2020 9 / 15

Predictions for Run II with $\mathrm{T}_{R}\mathrm{ENTo}{+}\mathsf{vUSP}{-}\mathsf{hydro}$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 10 /

I → [] → I → [] →

 $\sqrt{\mathrm{s_{NN}}} = 5.02 \,\mathrm{TeV}$ anti-kt R = 0.4 $|\eta| < 2.1$

	<□> < ₫	▶ ★콜▶ ★콜▶ 콜 님	৩১৫
F.M. Canedo	Jet Quenching in Relativistic Heavy-Ion Collis	May 2nd 2020	11 / 15

 $\sqrt{\mathrm{s_{NN}}} = 5.02 \, \mathrm{TeV}$ anti-kt R = 0.4 $|\eta| < 2.1$

	< 🗆 > < 🗗	▶ ▲ 콜 ▶ ▲ 콜 ▶ _ 콜 =	୬ୡଡ଼
F.M. Canedo	Jet Quenching in Relativistic Heavy-Ion Collis	May 2nd 2020	11 / 15

 $\sqrt{\mathrm{s_{NN}}} = 5.02 \, \mathrm{TeV}$ anti-kt R = 0.4 $|\eta| < 2.1$

	< 🗆 > < 🗗	▶ ▲콜▶ ▲콜▶ _콜 =	୬ବ୍ଦ
F.M. Canedo	Jet Quenching in Relativistic Heavy-Ion Collis	May 2nd 2020	11 / 15

 $\sqrt{\mathrm{s_{NN}}} = 5.02 \, \mathrm{TeV}$ anti-kt R = 0.4 $|\eta| < 2.1$

	<ロ > < 母 >	→ 돌 ▶ → 돌 ▶ - 돌 ⊨	୬ବ୍ଦ
F.M. Canedo	Jet Quenching in Relativistic Heavy-Ion Collis	May 2nd 2020	11 / 15

Predictions for v_n

 $\begin{array}{l} V_2 \\ \sqrt{\mathrm{s}_{\mathrm{NN}}} = 5.02 \ \mathrm{TeV} \ \mathrm{anti-kt} \\ R = 0.2 \\ |\eta| < 1.2 \end{array}$

PbPb 5.02 TeV

1 31	
 . Cai	ieuo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12 /

- 특이 ㅋ

< 🗆 > < 🗗 >

2 / 15

Predictions for v_n

 $\begin{array}{l} V_3 \\ \sqrt{\mathrm{s}_{\mathrm{NN}}} = 5.02 \ \mathrm{TeV} \ \mathrm{anti-kt} \\ R = 0.2 \\ |\eta| < 1.2 \end{array}$

PbPb 5.02 TeV

 ~ .
(anedo
cancuo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12 / 1

- 특이 ㅋ

- 4 🗗 🕨

 $\begin{array}{l} V_4 \\ \sqrt{\mathrm{s_{NN}}} = 5.02 \ \mathrm{TeV} \ \text{anti-kt} \\ R = 0.2 \\ |\eta| < 1.2 \end{array}$

 $\mathsf{PbPb}\ 5.02\,\mathrm{TeV}$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12 / 1

- 특이 ㅋ

🔺 🗗 🕨

 $V_2 \over \sqrt{\mathrm{s_{NN}}} = 5.02 \, \mathrm{TeV}$ anti-kt R = 0.2 $|\eta| < 1.2$

 $\mathsf{PbPb}\ 5.02\,\mathrm{TeV}$

	• • • • • • • • • • • • • • • • •	▶ ★ 돌 ▶ ★ 돌 ▶ · 몰 = ·	୬୯୯
edo	Jet Quenching in Relativistic Heavy-Ion Collis	May 2nd 2020	13 / 15

V3 $\sqrt{s_{NN}} = 5.02 \,\mathrm{TeV}$ anti-kt $\dot{R} = 0.2$ $|\eta| < 1.2$

> 0.008 0.006 0.004 v_3 0.002 0.000 -0.0020 - 10%10 - 20%20 - 40%40 - 60%

PbPb $5.02 \,\mathrm{TeV}$

	0.000	
	\ alle	

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020

 V_4 $\sqrt{\mathrm{s_{NN}}} = 5.02 \,\mathrm{TeV}$ anti-kt R = 0.2 $|\eta| < 1.2$

 $\mathsf{PbPb}\ 5.02\,\mathrm{TeV}$

ane	dc
Canc	.uc

Jet Quenching in Relativistic Heavy-Ion Collis

Conclusions and Outlook

Conclusions

Sensitivity		
Observable Sensitive to medium expansion		
Girth	No	
p_T^D	No	
Mass	No	
Jet v _n	Yes	

Are Jet Quenching models sensitive to hydro?

E 1.4	
	(anedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 14 /

글 🕨 그리님

4 ロ ト 4 同 ト 4 三 ト

Conclusions and Outlook

Conclusions

Sensitivity		
Observable Sensitive to medium expansion?		
Girth	No	
p_T^D	No	
Mass	No	
Jet v _n	Yes	

Are Jet Quenching models sensitive to hydro?

- From the shape perspective? Not the ones we have studied;
- From the anisotropic flow perspective? Yes!
- There is indication that Jet Quenching is sensitive to hydrodynamics;
- Observables that look at event-by-event fluctuations, i.e. v₂, might give further constraint both on hydro models and on the Jet Quenching models themselves;

< 🗆 🕨

• A new tool was developed to study interplay of jets and medium;

Conclusions and Outlook

Outlook

- Study other observables (*z_g*,n-subjetiness,...);
- Look for new ones;
- Study each observable dependence to each IC and hydro parameter (ζ,η);
- Use other IC and hydro models;
- Implement realistic EOS, local u_{μ} and heavy-flavor on JEWEL;

Backup

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 1 /

JEWEL calculates $T(x, y, \tau)$ as it generates events.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三□ ○ ○

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

JEWEL calculates $T(x, y, \tau)$ as it generates events. This can't be done with arbitrary ICs and hydro.

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

크는 May 2nd 2020

≣⇒

< 口 > < 同 > < 三 > <

JEWEL calculates $T(x, y, \tau)$ as it generates events. This can't be done with arbitrary ICs and hydro. So, a method was developed to read external profiles.

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

JEWEL calculates $T(x, y, \tau)$ as it generates events. This can't be done with arbitrary ICs and hydro. So, a method was developed to read external profiles. First, the profiles are generated according to a choice of initial conditions.

I → [] → I → [] →

JEWEL calculates $T(x, y, \tau)$ as it generates events. This can't be done with arbitrary ICs and hydro. So, a method was developed to read external profiles. First, the profiles are generated according to a choice of initial conditions.

Then it is saved into a grid.

< □ ▶

JEWEL calculates $T(x, y, \tau)$ as it generates events. This can't be done with arbitrary ICs and hydro. So, a method was developed to read external profiles. First, the profiles are generated according to a choice of initial conditions.

Then it is saved into a grid.

- *h* = 0.3 fm;
- $d\tau = 0.1 \, {\rm fm/c};$
- Bicubic interpolation;

< 🗆 🕨

4 A b

JEWEL calculates $T(x, y, \tau)$ as it generates events. This can't be done with arbitrary ICs and hydro. So, a method was developed to read external profiles. First, the profiles are generated according to a choice of initial

conditions.

Then it is saved into a grid.

- *h* = 0.3 fm;
- $d\tau = 0.1 \, {\rm fm/c};$
- Bicubic interpolation;

Events are generated reading this grid.

< 🗆 🕨

4 A b

PbPb 0-10%
$$\sqrt{\mathrm{s}_{\mathrm{NN}}}=2.76\mathrm{TeV}$$
 anti-kt
 $R=0.4$
 $|\eta|<0.8$

- 4 🗇 🕨

l aned	-
 Canca	

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 3 / 20

. 탄 권

PbPb 0-10% $\sqrt{s_{NN}} = 2.76 \text{TeV}$ anti-kt R = 0.2 $|\eta| < 0.8$ $40 \text{ GeV/c} < p_{T} < 60 \text{ GeV/c}$ $g = \frac{\sum_{i} p_{i}^{T} \Delta R_{i}}{p_{i}^{T}}$

・ロト・4日ト・4日ト 4日ト 三日 シスの

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 4 / 29

 $\begin{array}{l} \mbox{PbPb 0-10\%} \\ \sqrt{s_{\rm NN}} = 2.76 {\rm TeV} \mbox{ anti-kt} \\ \mbox{$R = 0.2$} \\ |\eta| < 0.8 \\ \mbox{$40 \ {\rm GeV/c} < p_{\rm T} < $60 \ {\rm GeV/c}$} \end{array}$

▲□▶ ▲圖▶ ▲콜▶ ▲콜▶ 콜|= 約९(

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 5 / 29

 $\begin{array}{l} \mbox{PbPb 0-10\%} \\ \sqrt{s_{\rm NN}} = 2.76 {\rm TeV} \mbox{ anti-kt} \\ R = 0.4 \\ |\eta| < 0.8 \\ 40 \ {\rm GeV/c} < {\rm p_T} < \\ 60 \ {\rm GeV/c} \end{array}$

▲□▶ ▲圖▶ ▲필▶ ▲필► 키익()

Jet Quenching in Relativistic Heavy-Ion Collis

Jets are defined through an algorithm that must satisfy certain conditions.

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 7 / 29

글 🖌 그 🖃 글

Jets are defined through an algorithm that must satisfy certain conditions.

collinear safe;

Jet Quenching in Relativistic Heavy-Ion Collis

≣⇒

lets are defined through an algorithm that must satisfy certain conditions.

- collinear safe;
- infrared safe; •

< 🗇 🕨

-≣->

Jet Quenching in Relativistic Heavy-Ion Collis

Anti-kt

Jets are defined through an algorithm that must satisfy certain conditions.

- collinear safe;
- infrared safe;

Jet Quenching in Relativistic Heavy-Ion Collis

Anti-kt

Based on a two particle distance;

$$d_{ij} = \min(p_{t\,i}^{-2}, p_{t\,j}^{-2}) \frac{\Delta R_{ij}}{R}$$
$$d_{i} = p_{t\,i}^{-2}$$

Where:

$$\Delta \mathbf{R} = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

 ~ .
(anedo
Cancac

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 8 / 29

Anti-kt

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 9 / 29

JEWEL keeps recoil

・ロト・(型ト・ミト・ミト・三) 三 のの

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 10 / 2

JEWEL keeps recoil

Thermal contamination must be subtracted

Jet Quenching in Relativistic Heavy-Ion Collis

크는 May 2nd 2020

F.M. Canedo

JEWEL keeps recoil

Thermal contamination must be subtracted 4 Moment Subtraction:

Jet Quenching in Relativistic Heavy-Ion Collis

▲ 클 ▶ ▲ 클 ▶ _ 클 | = ∽) May 2nd 2020 10

JEWEL keeps recoil

Thermal contamination must be subtracted 4 Moment Subtraction:

Thermal momenta \longrightarrow ghost particles

JEWEL keeps recoil

Thermal contamination must be subtracted

4 Moment Subtraction:

Thermal momenta \longrightarrow ghost particles

Particles close enough to these ghost particles are classified as thermal momenta.

< 🗆 🕨

JEWEL keeps recoil

Thermal contamination must be subtracted

4 Moment Subtraction:

Thermal momenta \longrightarrow ghost particles

Particles close enough to these ghost particles are classified as thermal momenta.

4 thermal momenta summed up and subtracted from the observable.

Quark-Gluon Plasma

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 11 /

< A

SCIFUSP

HEPIC

The experimental way of studying the Quark-Gluon Plasma are Relativistic Heavy-Ion Collisions

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

< 🗆 🕨

< 🗇 🕨

May 2nd 2020 12 /

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12

< 🗇 🕨

< 🗆 🕨

-≣->

SCIFUSP

MEPIC

The experimental way of studying the Quark-Gluon Plasma are Relativistic Heavy-Ion Collisions

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12

< 🗇 >

< 🗆 🕨

.≣ ▶

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12

< 🗇 🕨

< 🗆 🕨

MEPIC
Relativistic Heavy-Ion Collisions

The experimental way of studying the Quark-Gluon Plasma are Relativistic Heavy-Ion Collisions

May 2nd 2020 12 /

< f⊐ >

< 🗆 🕨

Relativistic Heavy-Ion Collisions

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 12 /

< 🗇 🕨

< 🗆 🕨

MEPIC

JEWEL^{*a,b,c*} (Jet Evolution with Energy Loss)

^a Eur.Phys.J. C74 (2014) no.2,2762 [arXiv:1212.1599] ^b JHEP 1303 (2013) 080 [arXiv:0804.3568]

^c arXiv:1707.01539

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 13

13 / 29

JEWEL^{*a,b,c*} (Jet Evolution with Energy Loss)

Runs with PYTHIA;

<ロト < 同ト < 三ト < 三ト

^a Eur.Phys.J. C74 (2014) no.2,2762 [arXiv:1212.1599] ^b JHEP 1303 (2013) 080 [arXiv:0804.3568]

^c arXiv:1707.01539

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 13 /

JEWEL^{*a,b,c*} (Jet Evolution with Energy Loss)

- Runs with PYTHIA;
- Based on BDMPS-Z formalism;

^a Eur.Phys.J. C74 (2014) no.2,2762 [arXiv:1212.1599] ^b JHEP 1303 (2013) 080 [arXiv:0804.3568]

^c arXiv:1707.01539

- NA	(anec	0
	. cance	5

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 13

(日)
 (日)

JEWEL^{*a,b,c*} (Jet Evolution with Energy Loss)

- Runs with PYTHIA;
- Based on BDMPS-Z formalism;
- Perturbative and minimal in assumptions;

Can a start

《曰》 《詞》 《言》 《言》

^a Eur.Phys.J. C74 (2014) no.2,2762 [arXiv:1212.1599] ^b JHEP 1303 (2013) 080 [arXiv:0804.3568]

^c arXiv:1707.01539

:▶ ◀ 툴 ▶ 토|ㅌ ∽) ९ (May 2nd 2020 13 / 2

JEWEL^{*a,b,c*} (Jet Evolution with Energy Loss)

- Runs with PYTHIA;
- Based on BDMPS-Z formalism;
- Perturbative and minimal in assumptions;
- Implements the LPM effect;

《曰》 《詞》 《言》 《言》

^a Eur.Phys.J. C74 (2014) no.2,2762 [arXiv:1212.1599] ^b JHEP 1303 (2013) 080 [arXiv:0804.3568]

^c arXiv:1707.01539

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 13 /

- 글 =

JEWEL^{*a,b,c*} (Jet Evolution with Energy Loss)

- Runs with PYTHIA;
- Based on BDMPS-Z formalism;
- Perturbative and minimal in assumptions;
- Implements the LPM effect;
- Allows differential and geometric treatment(jet shape);

^a Eur.Phys.J. C74 (2014) no.2,2762 [arXiv:1212.1599] ^b JHEP 1303 (2013) 080 [arXiv:0804.3568]

^c arXiv:1707.01539

<□> <⊡> <⊡> < 글> < 글> < 글= ♡'

May 2nd 2020 13 / 29

- First, a pair of partons is generated in PYTHIA;
- JEWEL then propagates these partons in a dense and hot medium;
- Once the partons leave the medium, the event is handed back to PYTHIA for hadronization;

- 4 🗗 🕨

< 🗆 🕨

In its default:

$$\epsilon(x, y, b, \tau) = \epsilon(x, y, b, \tau_i) \left(\frac{\tau}{\tau_i}\right)^{-4/3}$$

and

$$T(x, y, b, au) \propto \epsilon^{1/4}(x, y, b, au_i) \left(rac{ au}{ au_i}
ight)^{-1/3}$$

	N A I	

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 15 /

Bjorken

A variant of the Bjorken model is used. The (proper)time dependence is given by

$$\epsilon(\mathbf{x}, \mathbf{y}, \mathbf{b}, \tau) = \epsilon(\mathbf{x}, \mathbf{y}, \mathbf{b}, \tau_i) \left(\frac{\tau}{\tau_i}\right)^{-4/3}$$

and

F.M. Canedo

$$T(x, y, b, au) \propto \epsilon^{1/4}(x, y, b, au_i) \left(rac{ au}{ au_i}
ight)^{-1/3}$$

	< □ ▶	🔺 🗗 🕨	▲ 臣 ▶	< ≣ > _	- 문 문	500	2
Jet Quenching in Relativistic Heavy-Ion (Collis		Мау	/ 2nd 202	20	16 / 2	29

Objective, solve the conservation equation equation:

$$\partial_{\mu}T^{\mu\nu} + \Gamma^{\nu}_{\lambda\mu}T^{\lambda\mu} = 0 \tag{1}$$

Where:

F.M. Canedo

$$T^{\mu\nu} = (\epsilon + \rho + \Pi)u^{\mu}u^{\nu} - (\rho + \Pi)g^{\mu\nu}$$
(2)

Where ϵ is the local energy density, p is the local pressure in terms of ϵ according to an equation of state, and Π is the out-of-equilibrium term.

F.M

The method employed, Smoothed Particle Hydrodynamics requires the definition of a reference density:

$$\partial_{\mu}(\tau\gamma\sigma u^{\mu}) = 0 \tag{3}$$

With this definition, the equations of motion, then become:

	< □ > < č	🗗 🕨 🧃	■►	₹	- 문 두	\mathcal{O}	
Canedo	Jet Quenching in Relativistic Heavy-Ion Collis		Ma	y 2nd 20	020	18 / 29	

F.M. Canedo

The method employed, Smoothed Particle Hydrodynamics requires the definition of a reference density:

$$\partial_{\mu}(\tau\gamma\sigma u^{\mu}) = 0 \tag{3}$$

With this definition, the equations of motion, then become:

$$\gamma \frac{d}{d\tau} \left(\frac{\epsilon + p + \Pi}{\sigma} u_i \right) = \frac{\partial_i (p + \Pi)}{\sigma}$$
(4a)
$$\gamma \frac{d}{d\tau} \left(\frac{s}{\sigma} \right) + \left(\frac{\Pi}{\sigma} \right) \frac{\theta}{T} = 0$$
(4b)
$$\tau_{\Pi} \gamma \frac{d}{d\tau} \left(\frac{\Pi}{\sigma} \right) + \left(\frac{\Pi}{\sigma} \right) + \left(\frac{\zeta}{\sigma} \right) \theta = 0$$
(4c)

< □ >	< @ ►	∢ ≣ ⊁	<≣>	- 문) ㅋ	৩৫৫
Jet Quenching in Relativistic Heavy-Ion Collis		Ma	iy 2nd 20	20	18 / 29

Smoothed Particle Hydrodynamics

$$\tau\gamma\sigma \to \sigma^* = \sum_{\alpha=1}^{N_{SPH}} \nu_{\alpha} W[\mathbf{r} - \mathbf{r}_{\alpha}(\tau); h]$$
(5)

where σ is a local density, τ is the proper time and γ is the relativistic boost factor. The generalized current is:

$$\mathbf{j}^{*}(\mathbf{r},\tau) = \sum_{\alpha=1}^{N_{SPH}} \nu_{\alpha} \frac{d\mathbf{r}_{\alpha}(\tau)}{d\tau} W[\mathbf{r} - \mathbf{r}_{\alpha}(\tau); h]$$
(6)

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

For densities associated with extensive quantities we have:

$$a(\mathbf{r},\tau) = \sum_{\alpha=1}^{N_{SPH}} \nu_{\alpha} \frac{a(\mathbf{r}_{\alpha}(\tau))}{\sigma^{*}(\mathbf{r}_{\alpha}(\tau))} W[\mathbf{r} - \mathbf{r}_{\alpha}(\tau); h]$$
(7)

	${}^{\bullet} \Box {}^{\bullet}$	🔺 🗗 🕨	* 臣 ▶	▲콜▶ 콜 픽	৩১৫	
anedo	Jet Quenching in Relativistic Heavy-Ion Collis		Мау	y 2nd 2020	20 / 29	

The evolution equations for the SPH "particles" then become:

$$\sigma^* \frac{d}{d\tau} \left(\frac{(\epsilon + p + \Pi)_{\alpha}}{\sigma_{\alpha}} u_{i,\alpha} \right) =$$

$$\tau \sum_{\beta=1}^{N_{SPH}} \nu_{\beta} \sigma_{\alpha}^{*} \left(\frac{(p+\Pi)_{\beta}}{\sigma_{\beta}^{2}} + \frac{(\epsilon+p+\Pi)_{\alpha}}{\sigma_{\alpha}^{2}} \right) \partial_{i} W[\mathbf{r} - \mathbf{r}_{\beta}(\tau); h] \quad (8a)$$

$$\gamma_{\alpha} \frac{d}{d\tau} \left(\frac{s}{\sigma}\right)_{\alpha} + \left(\frac{\Pi}{\sigma}\right)_{\alpha} \left(\frac{\theta}{T}\right)_{\alpha} = 0$$
(8b)

$$\tau_{\Pi_{\alpha}}\gamma_{\alpha}\frac{d}{d\tau}\left(\frac{\Pi}{\sigma}\right)_{\alpha}\left(\frac{\Pi}{\sigma}\right)_{\alpha} + \left(\frac{\zeta}{\sigma}\right)_{\alpha}\theta_{\alpha} = 0$$
(8c)

르님님

May 2nd 2020

Jet Quenching in Relativistic Heavy-Ion Collis

F.M. Canedo

Smooth Glauber³

$$n(b, x, y) = T_A(x - \frac{b}{2}, y) \left(1 - \exp\left(-\sigma_{NN}T_B(x + \frac{b}{2}, y)\right) \right)$$
$$+ T_B(x + \frac{b}{2}, y) \left(1 - \exp\left(-\sigma_{NN}T_A(x - \frac{b}{2}, y)\right) \right)$$

³JEWEL Default

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 22 /

Smooth Glauber³

$$n(b, x, y) = T_A(x - \frac{b}{2}, y) \left(1 - \exp\left(-\sigma_{NN}T_B(x + \frac{b}{2}, y)\right) \right)$$
$$+ T_B(x + \frac{b}{2}, y) \left(1 - \exp\left(-\sigma_{NN}T_A(x - \frac{b}{2}, y)\right) \right)$$

Where:

$$T(x,y) = \int dz \rho(x,y,z)$$

And ρ is the Woods-Saxon potential.

³JEWEL Default

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 22 / 2

글 🕨 그리님

Smooth Glauber

< □ ▶	< 🗗 🕨	< ≣ ►	∢ ≣ ⊁	- 문 문	<u> </u>

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 23 / 2

$\mathrm{T}_{\mathrm{R}}\mathrm{ENTo}^{\,\textit{a}}$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 24 / 2

$\mathrm{T_RENTo}\,^{a}$

• parametric model based on Glauber;

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 24 /

T_RENTo

$T_{\rm R} {\rm ENTo}^{\,a}$

- parametric model based on Glauber;
- includes fluctuations event-by-event;

三 🕨

 $T_{\rm R} ENTo^{\,a}$

 nucleon positions are generated according to a Woods-Saxon potential;

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 24 /

 $\mathrm{T_RENTo}\,{}^{a}$

- nucleon positions are generated according to a Woods-Saxon potential;
- they collide with probability $P = 1 - \exp(\sigma_{gg} \int dx dy \int dz \rho_A \int dz \rho_B);$

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 24 /

크 🖌 프니크

 $\mathrm{T_RENTo}\,{}^{a}$

- nucleon positions are generated according to a Woods-Saxon potential;
- they collide with probability $P = 1 - \exp(\sigma_{gg} \int dx dy \int dz \rho_A \int dz \rho_B);$
- the protons that do collide are kept and compose the thickness function T_A;

< 🗆 🕨

- 4 A >

 $\mathrm{T_RENTo}\,{}^{a}$

- nucleon positions are generated according to a Woods-Saxon potential;
- they collide with probability $P = 1 - \exp(\sigma_{gg} \int dx dy \int dz \rho_A \int dz \rho_B);$
- the protons that do collide are kept and compose the thickness function T_A ;
- the thickness functions are combined through $f = \left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$;

< 🗆 🕨

4 A b

Frame Title

$$f = \left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$$

^a arXiv:1412.4708 [nucl-th]

	< □ >	∢ @ ►	∢≣≯	∢ ≣ ⊁	-문(ㅋ	୬୯୯
F.M. Canedo	Jet Quenching in Relativistic Heavy-Ion Collis		Ma	y 2nd 20	020	25 / 29

MC-KLN^a

- Based on CGC with kt factorization;
- Has a physical mechanism;

^a arXiv:0707.0249 [nucl-th]

F.M. Canedo

Jet	Quenching	g in Relativ

<u>□ ▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 | 単 ∽ ९ ↔</u> Illis May 2nd 2020 26 / 29

MC-KLN

Cross-section for gluon interaction:

$$\sigma \sim \alpha_s(Q^2)\pi r_{gl}^2 \sim \alpha_s(Q^2)rac{\pi}{Q^2}$$

$$\frac{A}{\pi R_0^2}\sigma = \alpha_s(Q^2)\frac{\pi}{Q^2} \sim 1$$

	< □ > < 5	▷ ▲ 글 ▶ ▲ 글 ▶ 글 크	୬୯୯
F.M. Canedo	Jet Quenching in Relativistic Heavy-Ion Collis	May 2nd 2020	27 / 29

MC-KLN

Gluon distribution function:

$$\phi_{\pm}(k_T^2; x_T) = \frac{Q_s^2(1-x)^4}{\alpha_s \max(Q_s^2, k_T^2)} \left(\frac{n_{part}^A(x_{\perp}, \pm b)}{T_A(x \pm b/2, y)} \right)$$
$$\frac{dN_g}{dx_T dY} \sim \int \frac{d^2 p_T}{p_T^2} \int d^2 k_T \alpha_s(k_T)$$
$$\times \phi_{\pm} \left(\frac{(p_T + k_T)^2}{4}; x_T \right) \phi_{-} \left(\frac{(p_T - k_T)^2}{4}; x_T \right)$$

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 27

MC-KLN

Energy density:

$$\epsilon(x_T, b) = \text{const} \times \left[\frac{dN_g}{d^2 x_T dY}\right]^{(4/3)}$$

< □ ▶	- 1 b	₹ ▶</th <th><₹ ≣ ►</th> <th>- 문 문</th> <th><u></u></th>	<₹ ≣ ►	- 문 문	<u></u>

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 28 / 2

The observables chosen were the following:

- 《曰》《曰》《臣》《臣》 된는 옛

F.M. Canedo

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 29 / 2

 $M_{jet} = \sqrt{p_{jet}^{\mu} p_{jet \,\mu}} = \sqrt{\left(E_{jet}^2 - \left(\sum_i \vec{p}_i\right)^2\right)}$

The observables chosen were the following:

> Mass; •

Jet Quenching in Relativistic Heavy-Ion Collis

크는 May 2nd 2020

 $M_{jet} = \sqrt{p_{jet}^{\mu} p_{jet \,\mu}} = \sqrt{\left(E_{jet}^2 - \left(\sum_i \vec{p}_i\right)^2\right)}$

The observables chosen were the following:

> • Mass:

Jet Quenching in Relativistic Heavy-Ion Collis

크는 May 2nd 2020

 $M_{jet} = \sqrt{p_{jet}^{\mu} p_{jet_{\mu}}} = \sqrt{\left(E_{jet}^2 - \left(\sum_i \vec{p}_i\right)^2\right)}$

The observables chosen were the following:

> • Mass:

_			
-	\л	(D r	edc
		Cal	ieuc

Jet Quenching in Relativistic Heavy-Ion Collis

- 글 | = May 2nd 2020

1 🗉 🕨

The observables chosen were the following:

- Mass;
- Girth; •

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020

- 글 | 글

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;

- 글 | 글 May 2nd 2020

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;
- v_n;

< • > < • > >

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 29 /

크는

< ㅁ > < 同 > < 글 > < 글 >

Jet Quenching in Relativistic Heavy-Ion Collis

F.M. Canedo

Jet Observables

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;
- v_n;
- x_J;

Following arXiv: 1509.07334, we generalize:

$$v_2^{\mathrm{ch\, jet}}(p_T^{\mathrm{ch\, jet}}) = rac{\pi}{4} rac{N_{\mathrm{in}}(p_T^{\mathrm{ch\, jet}}) - N_{\mathrm{out}}(p_T^{\mathrm{ch\, jet}})}{N_{\mathrm{in}}(p_T^{\mathrm{ch\, jet}}) + N_{\mathrm{out}}(p_T^{\mathrm{ch\, jet}})}$$

크는

May 2nd 2020

The observables chosen were the following:

- Mass;
- Girth;
- Dispersion;

F.M. Canedo

- v_n;
- xj;

Following arXiv: 1509.07334, we generalize:

$$v_{3}^{\mathrm{ch\, jet}}(\rho_{T}^{\mathrm{ch\, jet}}) = \frac{\pi}{4} \frac{N_{\mathrm{in}}(\rho_{T}^{\mathrm{ch\, jet}}) - N_{\mathrm{out}}(\rho_{T}^{\mathrm{ch\, jet}})}{N_{\mathrm{in}}(\rho_{T}^{\mathrm{ch\, jet}}) + N_{\mathrm{out}}(\rho_{T}^{\mathrm{ch\, jet}})}$$

< □ > < ⊡ > < Ξ > < Ξ > < Ξ > < Ξ = < つ

Jet Quenching in Relativistic Heavy-Ion Collis

May 2nd 2020 29 / 29

IFUSP WHEPIC