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QCD vacuum is a superposition of states with different topology, characterized by the  
topological charge density  

TOPOLOGY OF THE QCD VACUUM
20

This means that the gauge field configuration which goes to pure gauge at infinity and has finite

q can induce a transition from vacuum of winding number nw(t = −∞) to another vacuum of

winding number nw(t = ∞). In zero temperature, such gauge field configurations are called

instantons [160] and they are responsible for the quantum tunneling through the energy barrier

between vacua of different winding numbers [161–164].

The high energy barrier (∼ ΛQCD ∼ 200 MeV) between two vacua suppresses the instanton

transition rate exponentially, but at high-enough temperature, the transition between different

vacua can also be induced by another, classical, thermal excitation called sphaleron [165, 166]

which, instead of tunneling through the barrier, can take the vacuum over the barrier. In elec-

troweak theory, sphaleron transitions cause baryon number violation and may be important for

the cosmological baryogenesis [167, 168]. In QCD, the existence of the sphaleron configurations at

finite temperature enormously increases the transition rate [169–178]. At very high temperature,

the perturbative calculation of the sphaleron transition rate gives [2, 170–178]

Γsph ∼ (αsNc)
5T4, (39)

while the strong coupled holographic approach gives an even larger rate Γsph = (g2Nc)2/(256π2)T4 [179].

Thus at high temperature, the sphaleron transition rate can be very large. This provides a machin-

ery of generating P and CP odd bubbles in QGP (note that a transition process from a topologically

trivial vacuum to a topologically nontrivial vacuum violates P and CP symmetry as is evident

from the integrand of q).

Now if we integrate the axial anomaly equation in the QCD sector (for massless quarks)

∂µJ
µ
A =

g2Nf

16π2
Ga

µνG̃
µν
a , (40)

where J µ
A = ∑ f 〈ψ̄ f γµγ5ψ f 〉 ( f is over all massless flavors) is the axial current, we see that

NA(t = ∞)− NA(t = −∞) = 2q, (41)

where NA =
∫

d3xJ 0
A(x) is the total chirality or axial charge. This demonstrates that a topolog-

ically nontrivial gauge field configuration can create or annihilate the total chirality of fermions,

and thus if the QGP contains a (sufficiently large) domain in which q is finite we would expect

that it finally will contain unequal numbers of RH and LH quarks or anti-quarks even if initially

NA(t = −∞) = 0. This is how QGP can become chiral. We note here that the probabilities of

generating positive chirality and negative chirality are equal which means that over many col-

liding events in heavy-ion collisions the averaged chirality should vanish. What remains after

event average is the chirality fluctuation rather the chirality itself and any measurement of the

chirality-imbalance effects should be on the event-by-event basis, see Sec. IV.

(4) What is axial chemical potential? — There is a conceptual problem in interpreting µA as

the axial chemical potential for fermions: as when we talk about the chemical potential we always
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where cA = Nc
P

f q
2
fe

2/2⇡2 is the QED anomaly coe�cient and the field ✓ is sourced by the

topological charge density

q(x) =
g2

32⇡2
Ga

µ⌫G̃
aµ⌫(x) (2)

which varies in space and time across a CP -odd domain. As a result (1) cannot be rewritten as

a total derivative and removed from the Lagrangian. Instead, it appears in the modified Maxwell

equations as the spatial and the temporal derivatives of ✓.

It has been known since the pioneering article by Carroll, Feld and Jackiw [28] that in QED cou-

pled to the axion field, photons acquire an imaginary mass mA making possible their spontaneous

emission by fermions. This phenomenon is referred to as the vacuum Cherenkov radiation [29, 30].

Since the electromagnetic field in QGP is coupled to the axion-like field ✓, it is natural to expect

that a similar mechanism of photon radiation exists in hot nuclear medium as well. This idea was

developed in [31, 32] where it was argued that ultrarelativistic fermions moving in a finite-✓ domain

radiate photons, which we referred to as the chiral Cherenkov radiation. Additionally, fermions in

QGP radiate the chiral transition radiation as they cross the boundary between the plasma and

vacuum due to the di↵erence in the photon wave function inside and outside the plasma. The

spectra of both processes are proportional to the average values of the spatial and the temporal

✓-derivatives. Since the chiral Cherenkov radiation scales with the system volume, whereas the

chiral transition radiation scales with its area, the former is dominant when the contribution of

the entire QGP (as opposed to a single fast quark) is considered. Thus, the present work focuses

on the chiral Cherenkov radiation by QGP.

The analysis of [31, 32] relied on two basic assumptions: (i) ✓(x) is a slowly varying adiabatic

function of its arguments and (ii) the absolute value of the photon mass generated by the anomaly

|mA| is much larger than the plasma frequency !pl. The first assumption is the simplest model

that captures the essential dynamics of the chiral magnetic e↵ect [33–36]. It is supported by the

results obtained by Zhitnitsky [37, 38]. The second assumption is justified for large enough photon

energy ! becausem2
A is proportional to !, see (10), whereas the plasma frequency is !-independent.

These are the assumptions that are carried over to the present study as well. However, unlike the

radiation by a single quark discussed in [31, 32] where one is free to choose the quark energy high

enough so that most of the photon spectrum satisfy |mA| � !pl, in the case of QGP the bulk of the

photon radiation occurs at ! . T , where T is the QGP temperature. Still, it is argued in the next

section that at high enough temperatures, the photon mass satisfies the second assumption since

the plasma frequency is proportional to T , see (8), whereas the absolute value of m2
A is proportional

The transition rate per unit volume is exponentially suppressed at low 
temperatures, but increases at high temperatures as

→ Important phenomenological implications for QGP. 
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MAXWELL-CHERN-SIMONS THEORY

Electromagnetic field in chiral matter
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to the sphaleron transition rate � which rises at high temperatures as T 4.

The paper is organized as follows. Sec. II deals with the qualitative discussion of the electro-

magnetic fields in presence of the CP -odd domains. The mean value of the ✓-field in a domain is

related to the sphaleron transition rate and hence scales as T 4 at high temperatures. This indicates

that at high enough temperatures the chiral Cherenkov radiation becomes possible. In Sec. III, the

photon dispersion relation at finite ✓ is discussed. The main section is Sec. IV where the photon

radiation rate is computed. In order to simplify the derivations and emphasize the main physics

points, I am going to consider the relativistic limit ! � |mA|; generalization beyond this limit is

straightforward. In fact, such a generalization for a single quark has been recently obtained in [39].

The discussion and summary is presented in Sec. V.

II. ELECTRODYNAMICS IN QUARK-GLUON PLASMA WITH CP -ODD DOMAINS

The CP -odd domains in the chiral matter can be described by a pseudo-scalar field ✓ whose

interactions with the electromagnetic Fµ⌫ and color Ga
µ⌫ fields are governed by the Lagrangian

[28, 40–42]

L = LQED + LQCD �
cA
4
✓Fµ⌫F̃

µ⌫
�

c0A
4
✓Ga

µ⌫G̃
aµ⌫ + f2


1

2
(@µ✓)

2
�

1

2
m2

ax✓
2

�
, (3)

where F̃µ⌫ = 1
2✏µ⌫�⇢F

�⇢ is the dual field tensor, cA, c0A are the QED and QCD anomaly coe�cients

respectively and f , max are constants with mass dimension one. It follows that the equation of

motion of the ✓-field is

(@2 +m2
ax)✓ = �

1

4f2

⇣
c0AG

a
µ⌫G̃

aµ⌫ + cAFµ⌫F̃
µ⌫
⌘
. (4)

In the quark-gluon plasma the electromagnetic contribution to the topological charge density is

presumed to be negligible so that the ✓-field dynamics is driven primarily by the topologically

non-trivial gluon configurations. Assuming that ✓ is slowly varying inside a CP -odd domain one

can express it in terms of the topological number density (2) as

✓(x) = �
Nfq(x)

f2m2
ax

. (5)

The equations of motion of electromagnetic field read

@µF
µ⌫ = j⌫ � cAF̃

µ⌫@µ✓ , (6)

@µF̃
µ⌫ = 0 . (7)

Often used notations: 
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In a slowly varying field ✓, its first derivatives @µ✓ can be replaced by their constant domain–average

values denoted by �� = cA✓̇[35, 36, 43], referred to as the chiral conductivity, and b = cAr✓. In this

approximation the photon and the ✓-field dynamics decouple and one can consider electrodynamics

in the topologically non-trivial background [44].

The average of the ✓-field over an ensemble of CP -odd domains vanishes. However, its value in

a single domain can be finite due to the fluctuations of the topological number NCS . In the context

of this work we need to know the temperature dependence of the ✓-field in a domain because it

determines the temperature dependence of the e↵ective photon mass mA. In particular, if its T -

dependence is steeper than linear, then one expects that there is a range of temperatures where the

plasma becomes radioactive as explained at the end of Sec. I. The topological number density can

be estimated as q ⇠ NCS/Vdom, where Vdom ⇠ 1/m4
ax is the domain 4-volume. Since the sphaleron

size is inversely proportional to T , the domain volume decreases as Vdom ⇠ 1/T 4. Fluctuations

of NCS are related to the sphaleron transition rate � as
⌦
N2

CS

↵
= 2�Vpl [45] for large enough 4-

volume Vpl of plasma. Therefore, the variance of the topological number density is
⌦
q2
↵
⇠ m8

ax�Vpl.

Employing (5) it is seen that the typical variance of the ✓-field strength is
⌦
✓2
↵
⇠ m4

ax�Vpl/f4. �

is exponentially suppressed at low temperatures, but increases as T 4 at high temperatures [46–49].

It follows, using (10) of the next section, that mA ⇠ h✓i1/2 ⇠ T 4. Thus, |mA| exceeds !pl at high

T making the chiral Cherenkov radiation possible.

III. PHOTON DISPERSION RELATION

Now that the model parameters have been outlined, it is instructive to review the photon

dispersion relation. In the case ✓ = 0 the photon dispersion relation at finite temperature T and

finite chemical potentials of the right and left-handed fermions µR,L was computed in [50]. In the

high-energy limit, when the photon is near the mass-shell and transversely polarized, its dispersion

relation is !2
� k2 = !2

pl, where

!2
pl =

m2
D

2
=

e2

2

✓
T 2

6
+

µ2

2⇡2

◆
, (8)

and µ2 = µ2
R + µ2

L.

At finite ✓ the photon dispersion relation acquires an extra term due its interaction with the

CP -odd domains

!2
� k2 = !2

pl +m2
A +O(! � k) , (9)
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b
Weyl 
semimetals

“chiral conductivity” axial chemical potential  

�L = �cA
4
✓FF̃

<latexit sha1_base64="ckPafRQM90f6E0enF29ZEXEUi4o="></latexit>

In perturbation theory 
✓ = const

<latexit sha1_base64="5l4uvwDxqwG37SeLgdxcizTjTNs="></latexit>



4

ANOMALOUS CURRENTS IN QGP
r ·B = 0

r ·E = ⇢� cA r✓ ·B
r⇥E = �@tB

r⇥B = @tE + j + cA(@t✓B +r✓ ⇥E)

Anomalous currents:

P-odd,
T-odd

P-even,
T-odd

Kharzeev, McLerran, Warringa (2008)

Chiral magnetic effect

+ + + 

- - -

θ≠0
Breaks Parity!

External magnetic field drives 
the charge separation.

jAHE = b⇥E
<latexit sha1_base64="QqlGtfVBaJJfPfXhMi57/0v5Owc="></latexit>

jCME = ��B
<latexit sha1_base64="UzpI2njfDuaFxTFyJ+wQeQFQ1+M="></latexit>

Anomalous Hall Effect

In HIC 𝛁θ is small
Zhitnitsky 2013
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PARTICLE RADIATION IN MATTER: CHERENKOV 
AND TRANSITION RADIATION

Classical Cherenkov radiation is 
emitted by a charged particle that 
moves faster than the phase 
velocity of light: vn>1

Kirill Tuchin Phys. 572 Lecture Notes 75

There are two interesting limiting cases. In free space � ! 0 and we have

B� =
q

c⇡
⇡�

Z 1

0
J1(xb)x e

�x(z/v�t) dx =
q�

c

b

(b2 + �2(z/v � t)2)3/2
. (7.23)

This is precisely the magnetic field of a uniformly moving charge in free space, i.e. boosted Coulomb potential. If the
medium is a very good conductor, then we can expand the square roots in (7.22):

B� =
q

c⇡

2⇡

�

Z 1

0
J1(xb)x

2 exp

⇢
1

2
��2

✓
2x2

�2�2

◆⇣z
v

� t
⌘�

dx =
q

c

b�

2( zv � t)2
exp

⇢
�

b2�

4(t �
z
v )

�
. (7.24)

This is reminiscent of quasi-static fields that we discussed in Ch. 4, see in particular (4.41). This is not surprising
because the quasi-static approximation is applicable to good conductors.

• Additional reading: http://arxiv.org/pdf/1305.5806.pdf.

§2. Cherenkov radiation.

A. Electromagnetic field in the radiation zone.

To understand what electromagnetic radiation by a fast particle in medium, we need to examine the electromagnetic
field, which we computed in the previous section, in the radiation zone sr? � 1. Recall the asymptotic behavior of
the modified Bessel functions at large values of argument, see (1.180)

K⌫(sr?) =

r
⇡

2sr?
e�sr? . (7.25)

Clearly, the integral over ! in (7.14)–(7.17) is convergent only if Re s > 0. Suppose that the medium is transparent,
i.e. ✏ is a real function. Then there are two possibilities. (i) ��2 > ✏(!). Then, s is real and the wave decays
exponentially. In this case there is no radiation. (ii) ��2 < ✏(!) (velocity of particle is larger than the speed of light
in the medium). In such a case, electromagnetic field decreases as 1/

p
r?, which gives finite contribution to the power

at large r?, and corresponds to a cylindrical wave.
Let us investigate the case ��2 < ✏(!) in more detail. We have from (7.11)

s = ±
i!

c

r
✏(!) �

1

�2
. (7.26)

To decide which sign is physical, we need to take into account a small imaginary part of ✏. Writing ✏ = ✏0 + i✏00 and
expanding (7.26) in ✏00 we get

s = ±
i!

c

r
✏0 �

1

�2

✓
1 +

i✏00

2(✏0 � ��2)

◆
. (7.27)

Since ✏00 > 0 (see text after (5.117)) and ✏0 > ��2 the real part of s is positive only if we choose the minus sign in
(7.26).

Now, consider the phase of a monochromatic component of electromagnetic field in the radiation zone, which can
be read o↵ (7.14)–(7.16) and (7.25):

exp
n
i!

⇣z
v

� t
⌘

� sr?
o

= exp
n

�i!t + ikzz + ikzr?
p

�2✏ � 1
o
, (7.28)

where we used the dispersion relation ! = kzv and (7.27). On the other hand, phase (7.28) is a solution to Lorentz-
invariant wave equation. Therefore it must have form �ikµxµ = �i!t + k · r. Let ✓ be the polar angle of k with
respect to z-axis. Then, kz = k cos ✓ and k? = k sin ✓ = kz tan ✓. Hence, k · r = kzz + kzr? tan ✓. Comparing this
with (7.28) we conclude that tan ✓ =

p
�2✏ � 1. This implies that

cos ✓ =
1

�
p
✏

=
1

�n
, (7.29)

where in transparent medium
p
✏ is just the index of refraction. We observe that electromagnetic field in the radiation

zone has a form of a wave propagating at angle ✓, given by (7.29), to the fast particle velocity v = vẑ. Therefore, if
�n > 1, a charged particle moving through transparent medium with constant velocity emits electromagnetic waves
with frequency ! and at angle ✓. This is the Cherenkov radiation.

Notice that in view of (7.7) and (7.5), Bk! · v = Bk! · k = Ek! · k = 0.

Classical transition radiation is emitted 
by a charged particle that moves 
through inhomogeneous matter.
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33. Passage of particles through matter 33

33.7. Cherenkov and transition radiation [33,77,78]

A charged particle radiates if its velocity is greater than the local phase velocity of
light (Cherenkov radiation) or if it crosses suddenly from one medium to another with
different optical properties (transition radiation). Neither process is important for energy
loss, but both are used in high-energy and cosmic-ray physics detectors.

θc

γc

η

Cherenkov wavefront

Particle velocity   v = βc

v =
 v g

Figure 33.26: Cherenkov light emission and wavefront angles. In a dispersive
medium, θc + η != 900.

33.7.1. Optical Cherenkov radiation :

The angle θc of Cherenkov radiation, relative to the particle’s direction, for a particle
with velocity βc in a medium with index of refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2(1 − 1/nβ) for small θc, e.g . in gases. (33.43)

The threshold velocity βt is 1/n, and γt = 1/(1−β2
t )1/2. Therefore, βtγt = 1/(2δ+δ2)1/2,

where δ = n − 1. Values of δ for various commonly used gases are given as a function of
pressure and wavelength in Ref. 79. For values at atmospheric pressure, see Table 6.1.
Data for other commonly used materials are given in Ref. 80.

Practical Cherenkov radiator materials are dispersive. Let ω be the photon’s frequency,
and let k = 2π/λ be its wavenumber. The photons propage at the group velocity
vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In a non-dispersive medium, this simplies to
vg = c/n.

In his classical paper, Tamm [81] showed that for dispersive media the radiation is
concentrated in a thin conical shell whose vertex is at the moving charge, and whose
opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n(ω)
dn

dω
cot θc

]

ω0

, (33.44)

where ω0 is the central value of the small frequency range under consideration.
(See Fig. 33.26.) This cone has a opening half-angle η, and, unless the medium is

October 1, 2016 19:59
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Figure 33.27: X-ray photon energy spectra for a radiator consisting of 200 25µm
thick foils of Mylar with 1.5 mm spacing in air (solid lines) and for a single
surface (dashed line). Curves are shown with and without absorption. Adapted
from Ref. 88.
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1→2 PROCESSES IN CHIRAL MATTER

The dispersion relation

Radiative instability of quantum electrodynamics in chiral matter

Kirill Tuchin1
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(Dated: June 29, 2018)

Modification of the photon dispersion relation in chiral matter enables 1 ! 2 scattering.

As a result, the single fermion and photon states are unstable to photon radiation and

pair production respectively. The corresponding spectra are derived in the ultra-relativistic

approximation. It is shown that the polarization of the produced and decayed photons is

determined by the sign of the chiral conductivity. Impact of a flat thin domain wall on the

spectra is computed.

I. INTRODUCTION

One of the macroscopic manifestations of the chiral anomaly of QCD is the emergence of the

topological CP -odd domains in hot nuclear matter [1]. QED is coupled to these domains via its

own chiral anomaly. This is represented by the triangular diagrams that involve two photon fields

and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the

CP -odd domains, the chiral anomaly modifies the photon dispersion relation as [5–8]†

k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
† In covariant form k2 = ��

p
(n · k)2 � n2k2, where nµ = ���

µ
0 in the matter rest frame.

→ photon becomes space- or timelike
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and the axial current generated by the topological fluctuations of the gluon field. The axial current

rapidly increases with temperature which triggers a variety of non-trivial electromagnetic e↵ects

in quark-gluon plasma [2].

At a more fundamental level, the chiral anomaly makes photon topologically massive [3]. Con-

sequently, single photon and fermion states become unstable. Recall that photon radiation by a

charged fermion in vacuum f(p) ! f(p0) + �(k) and the cross-channel process of pair production

in vacuum �(k) ! f(p0) + f̄(p) are prohibited by momentum conservation.⇤ Indeed in the rest

frame of one of the fermions k2 = (p± p0)2 = 2m(m± "). The right-hand-side never vanishes since

" > m, whereas in the left-hand-side k2 = 0 [4]. In chiral matter, i.e. in a matter supporting the
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k2 = ����|k| , (1)

where � and k are photon helicity and momentum and �� is the chiral conductivity [9–11]. This

opens the 1 ! 2 scattering channels, viz. the pair-production if k2 > 0 and the photon radiation

if k2 < 0. Thus, single-particle states in chiral matter are unstable with respect to spontaneous

⇤ p, p0 and k are four-momenta with the components p = (",p), p0 = ("0,p0) and k = (!,k).
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5

where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)

with a solution

� = exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (21)

Thus, the fermion wave function is

 =
1p
2"V

u(p)ei"z�i"t exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (22)

IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)

Scattering matrix ⇒ need photon wave function.

Use the ultra-relativistic approximation:

1. no need to worry about the instability of EM field in the infrared 
2. no reflection off domain walls boundaries

3

where �� = cA✓̇ is the chiral conductivity [9–11]. In the radiation gauge A0 = 0 and r ·A = 0 the

vector potential obeys the equation

�r2A = �@2
tA+ ��(r⇥A) . (6)

Its solution describing a photon moving along the z-direction with energy ! � k?,�� is described

by the wave function

A(0) =
1p
2!V

e� e
ikzz�i!t , kz = ! , (7)

where the polarization vector satisfies e� · ẑ = 0. V is the normalization volume. It is convenient

to use the helicity basis e� = (x̂+ i�ŷ)/
p
2. To determine the e↵ect of the chiral anomaly on the

photon wave function, look for a solution in the form

A =
1p
2!V

(e�'+ ẑ'0) ei!z�i!t , (8)

where ' and '0 are functions of coordinates slowly varying in the longitudinal (z) direction, viz.

|@z'/'| ⌧ ! and |@z'0/'0| ⌧ !. The two unknown functions ' and '0 are required in order to

account for the change of the photon polarization direction. The gauge condition yields a constraint

(e� ·r?)'+ @z'
0 + i!'0 ⇡ (e� ·r?)'+ i!'0 = 0 . (9)

Substituting (8) into (6) one obtains

e�
�
�2i!@z'�r2

?'
�
+ ẑ

�
�2i!@z'

0 �r2
?'

0� = ��
�
!�e�'� e� ⇥r'� ẑ ⇥r?'

0� . (10)

Taking the scalar product of this equation with e⇤� and using e⇤± ·e⌥ = 0 and e⇤± ·e± = 1 produces

�2i!@z'�r2
?' = ��(!�'� i�@z') + i�e⇤� ·r?'

0 , (11)

where we used the identity e�⇥ ẑ = i�e�. In view of (9) one can drop the small term proportional

to '0. Neglecting also @z' in parentheses furnishes an equation for ':

�2i!@z'�r2
?' = ��!�' . (12)

Taking the scalar product of (10) with ẑ yields

�2i!@z'
0 �r2

?'
0 = ��i�(e� ·r)' . (13)

One can eliminate in (13) the term proportional to ' using the gauge condition (9). This furnishes

an equation for '0 which is precisely the same as equation (12) obeyed by '.

3
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4

A solution to (12) can be written as

' = eik?·x? exp

⇢
�i

1

2!

Z z

0

⇥
k2? � ��(z

0)!�
⇤
dz0

�
. (14)

It follows from (9) that

'0 = �e� · k?
!

' . (15)

Substituting (14) and (15) into (8) yields the photon wave function in the high energy approxima-

tion

A =
1p
2!V

✏� e
i!z+ik?·x?�i!t exp

⇢
�i

1

2!

Z z

0

⇥
k2? � ��(z

0)!�
⇤
dz0

�
, (16)

where the polarization vector

✏� = e� � e� · k?
!

ẑ . (17)

Clearly, ✏� · k = 0 up to the terms of order k2?/!
2 and ��/!. If the scattering process happens

entirely within a single domain, then the chiral conductivity is constant. However, if a domain

wall is located at, say, z = 0, than the chiral conductivity is di↵erent at z < 0 and z > 0. This is

why a possible z-dependence of �� is indicated in (16). Even though the boundary conditions on

the domain wall induce a reflected wave, it can be neglected in the ultra-relativistic approximation

[12, 17].

It is seen in (1) that half of the infrared modes |k| < ��� have Im! > 0 implying exponential

growth of the corresponding wave function with time. This infrared instability and its applications

are discussed in many recent publications [2, 6, 18? –33]. However, it is only tangentially related

to the radiative instability discussed in this paper, even though both originate from the same

dispersion relation. In particular, the infrared instability can be ignored in the ultra-relativistic

limit ! � k? � |��| because equation

kz ⇡ ! � 1

2!

�
k2? � ���!

�
(18)

has only real solutions.

III. FERMION WAVE FUNCTION

The free fermion wave function  at high energy " � p?,m can be obtained using the same

procedure. Since it satisfies the Dirac equation we are looking for a solution in the form

 =
1p
2"V

u(p)�ei"z�i"t , (19)
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are discussed in many recent publications [2, 6, 18? –33]. However, it is only tangentially related

to the radiative instability discussed in this paper, even though both originate from the same

dispersion relation. In particular, the infrared instability can be ignored in the ultra-relativistic

limit ! � k? � |��| because equation

kz ⇡ ! � 1

2!

�
k2? � ���!

�
(18)

has only real solutions.

III. FERMION WAVE FUNCTION

The free fermion wave function  at high energy " � p?,m can be obtained using the same

procedure. Since it satisfies the Dirac equation we are looking for a solution in the form

 =
1p
2"V

u(p)�ei"z�i"t , (19)

Fermion wave function

5

where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)

with a solution

� = exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (21)

Thus, the fermion wave function is

 =
1p
2"V

u(p)ei"z�i"t exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (22)

IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)
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5
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Photon spectrum:

6

The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [34]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)

5

where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of
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�
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Thus, the fermion wave function is
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2"V
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2"

�
. (22)
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photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)

5

where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains
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� = exp
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�
. (21)
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by
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dz exp
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where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and
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6

The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [34]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)

x = !/"
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where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)
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IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads
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 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
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8""0!
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, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
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2"
+
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(26)

=M0
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�1
dz exp
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i
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0

q2? + �(z0)
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�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)Photon radiation rate

Kappa is negative if
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The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [34]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)
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The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 4⇡"x(1� x)M0�(q
2
? + �) . (34)

The square of the delta-function in (34) gives A�(q2?+�)/(4⇡), where A is the cross sectional area

of the domain. The relevant intensive observable quantity is the number of photons produced per

unit area dW = dN/A. It is given by

dW =
1

16⇡2
x(1� x)dx

1

2

X

�,�,�0

|M|2 ✓(��) , (35)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (36)and
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Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2⇡x

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2⇡
(1� x)

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (37)

dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.
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where u(p) is a spinor describing a free fermion with momentum p and � is a scalar function of

coordinates. Substituting  into (@2 +m2) = 0 and neglecting @z� compared to "� one obtains

2i"@z�+r2
?� = m2� (20)

with a solution

� = exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (21)

Thus, the fermion wave function is

 =
1p
2"V

u(p)ei"z�i"t exp

⇢
ip? · x? � iz

p2
? +m2

2"

�
. (22)

IV. PHOTON RADIATION

Modification of the photon dispersion relation in chiral matter makes possible spontaneous

photon radiation f(p) ! f(p0) + �(k). The corresponding scattering matrix element reads

S =� ieQ

Z
 ̄�µ Aµd

4x (23)

=� ieQ(2⇡)�(! + "0 � ")
ū(p0)�µu(p)✏⇤µp

8""0!

Z 1

�1
dz

Z
d2x? �

⇤
p0(z,x?)'

⇤
k(z,x?)�p(z,x?) (24)

=i(2⇡)3�(! + "0 � ")�(p? � k? � p0
?)

Mp
8""0!V 3

, (25)

where Q is the fermion electric charge. The wave functions 'k and �p are given by (14) and (22)

respectively with the subscripts indicating the corresponding momenta. The amplitude M is given

by

M =� eQū(p0)�µu(p)✏⇤µ

Z 1

�1
dz exp

(
i

Z z

0
dz0

"
p02? +m2

2"0
�

p2? +m2

2"
+

k2? � ��!�

2!

#)
(26)

=M0

Z 1

�1
dz exp

⇢
i

Z z

0

q2? + �(z0)

2"x(1� x)
dz0

�
, (27)

where we introduced notations M0 = �eQū(p0)�µu(p)✏⇤µ, x = !/",

q? = xp0 � (1� x)k? , (28)

and

�(z) = x2m2 � (1� x)x���" . (29)

Total rate of energy loss

Vanishes as ℏ→0 
Quantum anomaly!
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The amplitude M0 can most e�ciently be computed in the helicity basis using the matrix elements

derived in [36]. Keeping in mind that at high energies k+ = xp+, one obtains

M0 = �eQū�0(p0)� · ✏⇤�(k)u�(p) (30)

= � eQp
2(1� x)


xm(� + �)��0,�� � 1

x
(2� x+ x��)(qx � i�qy)��0,�

�
, (31)

where � = ±1 and �0 ± 1 are the fermion helicities before and after photon radiation.

The transition probability can be computed as

dw = |S|2V d3p0

(2⇡)3
V d3k

(2⇡)3
= |S|2V d2p?dp0z

(2⇡)3
V d2q?dkz

(2⇡)3
(32)

The cross section is the rate per unit flux V �1, while the number of produced photons N is the

cross section per unit area. Using the usual rules for dealing with the squares of the delta-functions

and integrating over the phase space yields

dN =
1

(2⇡)3
1

8x(1� x)"2
1

2

X

�,�,�0

|M|2d2q?dx , (33)

where the sum runs over the photon and fermion helicities. Eqs. (33),(31),(27) give the spectrum

of radiated photons. In the following subsections the explicit expressions for the photon spectrum

are derived for a single domain and for two domains separated by a domain wall at z = 0.

A. One infinite domain

Consider first an infinite chiral matter with constant chiral conductivity. Performing the integral

over z in (27) yields

M = 2⇡M0 �

✓
q2? + �

2"x(1� x)

◆
. (34)

The square of the delta-function in (34) is interpreted as the delta-function multiplied by T/2⇡,

where T is the observation time. Namely,

|M|2 = 4⇡"x(1� x)�(q2? + �)T |M0|2 . (35)

The relevant intensive observable quantity then is the photon radiation rate W given by

dW

dx
=

1

16⇡"

1

2

X

�,�,�0

|M0|2 ✓(��) , (36)

where ✓ is the step-function. It follows from (29) that � is negative if ��� > 0 and

x < x0 =
1

1 +m2/(���")
. (37)

7

Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (36) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2"x2(1� x)

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2"x

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (38)

dW�
dx

= 0 . (39)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (38) is of the order ↵2.

The total energy radiated by a fermion per unit time is

�"

T
=

Z 1

0

dW+

dx
x"dx =

1

3
↵Q2��" , (40)

where the terms of order m2/|��|" have been neglected for simplicity. Thus, energy loss increases

exponentially with time. It can be neglected only for time intervals much smaller than ⇠ 1/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(41)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (42)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (42), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (43)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection, provided that the square

of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).
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of the delta functions is treated as explained after (34). Let us also note that when q2? + � = 0

in (41), the second integral equals T/2, which implies that we have to identify � = 4"x(1 � x)/T

(the same result is of course obtained using the first integral).

“chiral Cherenkov effect”

4

the resonant behavior, while the other one is suppressed. Whether the photon spectrum is right-

or left-hand polarized depends on the sign of ��.

Since µ2 ⇡ ����!, the angular distribution of the photons peaks at the angle #2 = q2?/!
2 =

��/x2"2 with respect to the fermion momentum. If the fermion mass is negligible and bearing in

mind that most photons are soft (x ⌧ 1) we can estimate #2 ⇡ ���/!.

III. APPLICATIONS

1. As the first application, consider jet emission from the quark-gluon plasma (QGP) with

a homogenous chiral conductivity. QGP is isotropic at the scales of interest here, hence the

corresponding case is (i). Jets in heavy-ion collisions are produced by the highly energetic color

particles. If a jet is originated by a quark (as opposed to a gluon) we expect radiation of circularly

polarized photons in a cone with the opening angle # ⇠
p
|��|/! with respect to the jet momentum.

The chiral conductivity is an unknown parameter. If we estimate it as �� ⇠ 10 MeV, then

! = 1 GeV photons are emitted at the angle # ⇠ 0.1, provided that the jet energy " is much larger

than !. Thus the observation of circularly polarized photons at angle # to the jet direction would

be an indication of the chiral transition radiation.

2. We have seen that the main feature of the transition radiation from chiral matter is the

emergence of the resonance factor in (11). It arises entirely due to the energy and momentum

conservation in a 1 ! 2 process involving a photon with complex “mass” µ. Thus we expect to see

the same resonant factor as in (11) arising in the case (ii) which deals with an anisotropic matter.

The calculation of the pre-factor requires a more careful analysis that will be presented elsewhere.

In the high energy limit Eq. (4) reduces to µ2 ⇡ ��!b cos�, where � is the angle between b and

the photon momentum. The soft photon emission angle in the massless limit is #2 ⇡ �b cos�/!.

Similarly to the previous case (i), the photon spectrum is circularly polarized. One can verify

that now � is negative only if � cos� > 0 and x < [1 +m2/(�"b cos�)]�1. Thus the polarization

direction depends on whether b points towards or away from the boundary. Furthermore, since µ2

is proportional to cos�, the radiation is maximal when � = 0 or ⇡ and vanishes in the perpendicular

direction. To estimate the characteristic radiation angle discussed above, consider a Weyl semimetal

with b = (↵/⇡)80 eV [18, 19]. An electron with energy about GeV moving parallel to b (� = 0)

would radiate, say, ! = 10 MeV photons at # = 1.3 · 10�4. This can be tested by injecting a beam

of energetic electrons normal to a Weyl semimetal film and measuring the polarization and angular

distribution of the photons emitted in a cone with the opening angle # around the beam direction.

can become negative!
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TWO SEMI-INFINITE DOMAINS

7

Assume for definitiveness that �� > 0. Then only the right-polarized photons with � > 0 are

radiated. Using (34), (31) in (35) and performing the summations and the integration yields the

density of spontaneously radiated photons

dW+

dx
=

↵Q2

2⇡x

⇢
�
✓
x2

2
� x+ 1

◆
+ +

x4m2

2

�
✓(x0 � x)

=
↵Q2

2⇡
(1� x)

⇢
��"

✓
x2

2
� x+ 1

◆
�m2x

�
✓(x0 � x) , (37)

dW�
dx

= 0 . (38)

Photon spectrum radiated in a matter with �� < 0 can be obtained by replacing W± ! W⌥ and

�� ! ���. Note that since the anomaly coe�cient cA ⇠ ↵, the spectrum (37) is of the order ↵2.

The total energy radiated by a fermion per unit area is

�" =

Z 1

0

dW+

dx
x"dx =

↵Q2

2⇡

13

120
��"

2 , (39)

where the terms of order m2/|��|" have been neglected for simplicity. It increases as "2 indicating

the necessity to resum the high order corrections at very high energies " ⇠ 10/|��|↵.

B. Two semi-infinite domains separated by a domain wall at z = 0

Suppose now that the chiral matter consist of two semi-infinite domaines separated by a thin

domain wall at z = 0. Performing the integral over z in (27) yields

M = M0

(Z 0

�1
dz e

iz
q2?+0��i�

2"x(1�x) +

Z 1

0
dz e

iz
q2?+�+i�

2"x(1�x)

)
(40)

= 2"x(1� x)M0

⇢
�i

q2? + 0� � i�
� �i

q2? + � + i�

�
, (41)

where the values of � at z < 0 and z > 0 are denoted by 0� and � respectively and � > 0 is

inserted to regularize the integrals. Plugging (41), (31) into (33) and performing summation over

spins yields the radiation spectrum

dN

d2q?dx
=

↵Q2

2⇡2x

⇢✓
x2

2
� x+ 1

◆
q2? +

x4m2

2

�X

�

����
1

q2? + 0� � i�
� 1

q2? + � + i�

����
2

. (42)

The spectrum peaks at q2? = �� and/or q2? = �0� provided that � < 0 and/or 0� < 0

respectively. In the limit � ! 0� the results of the previous subsection are reproduced if one

identifies � = 4/A ‡.

‡ In electrically conducting matter � receives a contribution proportional to electrical conductivity �. In hot nuclear

matter this contribution has negligible e↵ect on the photon spectrum since � ⌧ 1/
p
A.

(Transition radiation in ordinary materials corresponds to

8

Away from the poles, one can neglect � in (42). The resulting spectrum coincides with the

spectrum of the transition radiation once �’s are replaced by tr = m2x2+m2
�(1�x), where m� is

the e↵ective photon mass [12, 17]. Unlike the spontaneous radiation, the transition radiation is not

possible in a uniform matter. Indeed, the amplitude (34) vanishes because tr > 0. Another key

di↵erence between the transition and spontaneous radiation is that the former has a finite classical

limit ~ ! 0, while the later one does not. The spontaneous radiation spectrum (43),(44) is a purely

quantum e↵ect that vanishes in the classical limit ~ ! 0. This is of course not surprising at all

because it originates from a quantum anomaly.

Integral over the momentum q? in (42) is dominated by the poles at q2? = �� and q2? = �0�.

There are two distinct cases depending on whether �� and �0
� have the same or opposite signs.

Consider first �� > 0 and �0
� > 0. In this case the photon spectrum is approximately right-

polarized. Keeping only the terms proportional to 1/� = A/4 one obtains

dW++

dx
=

↵Q2

8x

✓
x2

2
� x+ 1

◆
|+ + 0+|+

x4m2

2

�
✓(x0 � x)✓(x00 � x) , (43)

where the double plus subscript indicates that the helicity is positive in both domains. The

maximum energy fraction taken by the photon x0 is defined in (36); x00 is the same as x0 with ��

replaced by �0
�. Consider now �0

� > 0 and �� < 0. The integration gives

dW+�
dx

=
↵Q2

8x

⇢✓
x2

2
� x+ 1

◆
|0+|+

x4m2

4

�
✓(x00 � x)

+

✓
x2

2
� x+ 1

◆
|�|+

x4m2

4

�
✓(x0 � x)

�
. (44)

Clearly, photons radiated to the left of the domain wall (z < 0) are right-polarized, while those

radiated to its right (z > 0) are left-polarized.

V. PAIR PRODUCTION

Momentum conservation prohibits the spontaneous photon decay �(k) ! f̄(p)+f(p0) in vacuum.

However, in chiral matter this channel is open due to the chiral anomaly. This is the cross-channel

of the photon radiation computed in the previous section. The scattering matrix is now given by

S = i(2⇡)3�(! � "0 � ")�(k? � p? � p0
?)

Mp
8""0!V 3

, (45)

where

M =� eQū(p0)�µv(p)✏µ

Z +1

�1
dz exp

⇢
i

Z z

0

q̃2? + ̃�(z0)

2!x(1� x)
dz0

�
. (46)

finite at ℏ→0)

Contribution of the pole at q2? + � = 0 is the chiral Cherenkov radiation.
The rest is the “chiral transition radiation”
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CONCLUSION 1

1. Charged particles traveling through the chiral 
medium emit electromagnetic radiation sensitive 
to the chiral anomaly.  

2. It is  

a. circularly polarized, 

b. has resonant peaks at angles proportional to 
the anomaly, 

c. has characteristic angular distribution. 

3. It can be used to investigate the chiral anomaly in 
QGP, Weyl semimetals, axionic dark matter.
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PHOTON PRODUCTION BY QGP VIA THE CHIRAL 
ANOMALY (W/O EXTERNAL MAGNETIC FIELD)

The photon energy produced by thermal quarks is controlled by the plasma temperature 
→ must take into account the plasma frequency

4

In a slowly varying field ✓, its first derivatives @µ✓ can be replaced by their constant domain–average

values denoted by �� = cA✓̇[35, 36, 43], referred to as the chiral conductivity, and b = cAr✓. In this

approximation the photon and the ✓-field dynamics decouple and one can consider electrodynamics

in the topologically non-trivial background [44].

The average of the ✓-field over an ensemble of CP -odd domains vanishes. However, its value in

a single domain can be finite due to the fluctuations of the topological number NCS . In the context

of this work we need to know the temperature dependence of the ✓-field in a domain because it

determines the temperature dependence of the e↵ective photon mass mA. In particular, if its T -

dependence is steeper than linear, then one expects that there is a range of temperatures where the

plasma becomes radioactive as explained at the end of Sec. I. The topological number density can

be estimated as q ⇠ NCS/Vdom, where Vdom ⇠ 1/m4
ax is the domain 4-volume. Since the sphaleron

size is inversely proportional to T , the domain volume decreases as Vdom ⇠ 1/T 4. Fluctuations

of NCS are related to the sphaleron transition rate � as
⌦
N2

CS

↵
= 2�Vpl [45] for large enough 4-

volume Vpl of plasma. Therefore, the variance of the topological number density is
⌦
q2
↵
⇠ m8

ax�Vpl.

Employing (5) it is seen that the typical variance of the ✓-field strength is
⌦
✓2
↵
⇠ m4

ax�Vpl/f4. �

is exponentially suppressed at low temperatures, but increases as T 4 at high temperatures [46–49].

It follows, using (10) of the next section, that mA ⇠ h✓i1/2 ⇠ T 4. Thus, |mA| exceeds !pl at high

T making the chiral Cherenkov radiation possible.

III. PHOTON DISPERSION RELATION

Now that the model parameters have been outlined, it is instructive to review the photon

dispersion relation. In the case ✓ = 0 the photon dispersion relation at finite temperature T and

finite chemical potentials of the right and left-handed fermions µR,L was computed in [50]. In the

high-energy limit, when the photon is near the mass-shell and transversely polarized, its dispersion

relation is !2
� k2 = !2

pl, where

!2
pl =

m2
D

2
=

e2

2

✓
T 2

6
+

µ2

2⇡2

◆
, (8)

and µ2 = µ2
R + µ2

L.

At finite ✓ the photon dispersion relation acquires an extra term due its interaction with the

CP -odd domains

!2
� k2 = !2

pl +m2
A +O(! � k) , (9)
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5

where m2
A is given by

m2
A = ����! , or m2

A = ��k · b , (10)

depending on which of the parameters �� or b is largest [32]⇤ and � = ±1 is the right and left-

handed photon polarization. Note that mA can be real or imaginary. As explained in the previous

two sections, at high enough photon energies and plasma temperatures !pl is but a small correction

compared to mA and will be neglected in the following sections.

IV. PHOTON RADIATION RATE

Photon emission by means of the chiral Cherenkov radiation mechanism can proceed via two

channels: (i) the decay channel q ! q� and (ii) the annihilation channel qq̄ ! �.† The total photon

radiation rate is the sum of rates of these two processes.

A. Decay channel

The scattering matrix element for photon radiation in the decay channel q(p) ! q(p0) + �(k) is

given by SD = (2⇡)4�(4)(p0 + k � p)iMD where

iMD = �ieQ
ūp0s0/✏

⇤
k�ups

p

8""0!V 3
. (11)

The components of the 4-vectors are p = (",p), p0 = ("0,p0) and k = (!,k), Q is quark charge and

m = gT/
p
3 its thermal mass [11]. We retained the relativistic normalization factors (2p0V )�1/2

for each of the three fields, where V is the normalization volume. The radiation probability can

be computed as

dwD = 2Nc
1

2

X

�ss0

|SD|
2f(")[1� f("0)]

V d3p0

(2⇡)3
V d3k

(2⇡)3
V d3p

(2⇡)3
, (12)

where 2Nc accounts for the number quarks and antiquarks of di↵erent color, 1/2 comes from the

incident quark spin average and f(") is the quark equilibrium distribution function, which reads

f(") =
1

e"/T + 1
. (13)

⇤ In [32] mA was denoted as µ. The dispersion relations for arbitrary �� and b can be found in [28].
† I am using the term ‘the chiral Cherenkov radiation’ with respect to both channels.

mA ⇠
p

h✓2i ⇠ �sp ⇠ T 4
<latexit sha1_base64="SzYRRTSV4rEyHIFuIhToQi7LlVM="></latexit>

Due to the topological number fluctuations

Thus, at high enough T mA � !pl
<latexit sha1_base64="/0pAu+pCuIRv5XOyTMpWZaeFj0c=">AAACEHicbVBNS8NAEN3U7/oV9eDBy2IRPJWkinpUvHisYFUwJWy207i4m4TdiVhC/oR/wavevYlX/4FXf4nbNgetPhh4vDfDzLwok8Kg5306tanpmdm5+YX64tLyyqq7tn5p0lxz6PBUpvo6YgakSKCDAiVcZxqYiiRcRXenQ//qHrQRaXKBgwy6isWJ6AvO0Eqhu6nCkyCOaZAqiFkYIDxgkckydBte0xuB/iV+RRqkQjt0v4JeynMFCXLJjLnxvQy7BdMouISyHuQGMsbvWAw3liZMgekWowdKumOVHu2n2laCdKT+nCiYMmagItupGN6aSW8o/utFamIz9o+6hUiyHCHh48X9XFJM6TAd2hMaOMqBJYxrYW+n/JZpxtFmWLeh+JMR/CWXraa/12yd7zeOD6p45skW2Sa7xCeH5JickTbpEE5K8kSeyYvz6Lw6b877uLXmVDMb5Becj2+0Ip0/</latexit>

→ Cherenkov radiation is possible

Thermal q 
and anti-q
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THE DECAY CHANNEL
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m = gT/
p
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where 2Nc accounts for the number quarks and antiquarks of di↵erent color, 1/2 comes from the

incident quark spin average and f(") is the quark equilibrium distribution function, which reads

f(") =
1

e"/T + 1
. (13)

⇤ In [32] mA was denoted as µ. The dispersion relations for arbitrary �� and b can be found in [28].
† I am using the term ‘the chiral Cherenkov radiation’ with respect to both channels.
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The decay probability
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The small chemical potentials of quarks is neglected. The rate of photon production per unit

volume can be computed as

d�D =
dwD

V T
= 2Nc

�(! + "0 � ")

16(2⇡)5""0!

X

�ss0

|iMD|
2f(")[1� f("0)]d3kd3p . (14)

Performing the summation over the transverse photon polarizations using

X

�

✏µk�✏
⌫⇤
k� =

8
<

:
0, ⌫µ = 0 ,

�ij � kikj

k2 , ⌫ = i, µ = j .
(15)

yields the result

X

ss0

|MD|
2 = 4


""0 �m2

�
(k · p)(k · p0)

k2

�
. (16)

In the high energy limit the momenta of the initial and final quarks and the photon have a large

component, say along the z-direction, that allows one to approximate

pz ⇡ "

✓
1�

p2? +m2

2"2

◆
, kz ⇡ !

✓
1�

k2? +m2
A

2!2

◆
, p0z ⇡ "0

✓
1�

p02? +m2

2"02

◆
. (17)

Denoting by x = !/" the fraction of the incident quark energy carried away by the photon and

substituting (17) into (15) one derives

X

ss0

|MD|
2 =

2

x2(1� x)

⇥
q2?(2� 2x+ x2) +m2x4

⇤
, (18)

where q? = xp? � k?. In the same approximation the energy delta-function can be written as

�(! + "0 � ") ⇡ 2x(1� x)"�
�
q2? +m2

A(1� x) +m2x2
�
, (19)

Substituting (18) and (19) into (14) and integrating over q? instead of p? one finds

!
d�D

d3k
= 2Nc

e2Q2⇡

4(2⇡)5

Z 1

0

dx

x4
f
⇣!
x

⌘
1� f

✓
!(1� x)

x

◆�X

�

�
�m2

A[(1� x)2 + 1]� 2m2x2
 
✓(��) ,

(20)

where it is denoted

� = m2
A(1� x) +m2x2 . (21)

Evidently, since m2 > 0 the non-vanishing contribution to the photon production rate in this

channel exists only if m2
A < 0. Moreover, � is negative only if |m2

A|(1� x) > x2m2 which occurs

when

0  x <
|m2

A|

2m2

 s

1 +
4m2

|m2
A|

� 1

!
. (22)
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d�D

d3k
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dx

x4
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x
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1� f

✓
!(1� x)
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◆�X

�

�
�m2

A[(1� x)2 + 1]� 2m2x2
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where it is denoted
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Evidently, since m2 > 0 the non-vanishing contribution to the photon production rate in this
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0  x <
|m2

A|

2m2

 s

1 +
4m2

|m2
A|

� 1

!
. (22)
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�
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2m2
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|m2
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� 1

!
. (22)👉
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where it is denoted

� = m2
A(1� x) +m2x2 . (21)

Evidently, since m2 > 0 the non-vanishing contribution to the photon production rate in this

channel exists only if m2
A < 0. Moreover, � is negative only if |m2

A|(1� x) > x2m2 which occurs

when

0  x <
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 s

1 +
4m2

|m2
A|

� 1

!
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and

x = k0/p0 = !/"
<latexit sha1_base64="vMqMIvY8f5s2M+JGMdle6gasBTM=">AAACFnicbVA9SwNBEN2LXzF+RS1FWAyCVXIXRW0CARvLCOYDcknY20ySJbt3x+5eMIRU/gn/gq32dmJra+svcS+5QhMfDDzem2FmnhdyprRtf1mpldW19Y30ZmZre2d3L7t/UFNBJClUacAD2fCIAs58qGqmOTRCCUR4HOre8Cb26yOQigX+vR6H0BKk77Meo0QbqZM9figN23YhbNsl7AYC+qTgjoiEUDEe+zk7b8+Al4mTkBxKUOlkv91uQCMBvqacKNV07FC3JkRqRjlMM26kICR0SPrQNNQnAlRrMntjik+N0sW9QJryNZ6pvycmRCg1Fp7pFEQP1KIXi/96nljYrHvXrQnzw0iDT+eLexHHOsBxRrjLJFDNx4YQKpm5HdMBkYRqk2TGhOIsRrBMasW8c54v3l3kypdJPGl0hE7QGXLQFSqjW1RBVUTRI3pGL+jVerLerHfrY96aspKZQ/QH1ucP4Xee1g==</latexit>
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•  In the limit m≪|mA| (hight T)  

7

One can perform the integration of x explicitly in the limit m ⌧ |mA|. It is convenient to

introduce a new variable ⇠ = 1/x� 1 in place of x and rewrite (20) as

!
d�D

d3k
= 2Nc

e2Q2

8(2⇡)4

Z 1

0
d⇠

�
�m2

A

⇥
⇠2 + (1� ⇠)2

⇤
� 2m2

 
f(!(1 + ⇠)) [1� f(!⇠)]

⇥✓
�
�m2

A⇠(1 + ⇠)�m2
�
, (23)

where only the photon polarization that gives m2
A < 0 contributes. Neglecting m one obtains

!
d�D

d3k
= 2Nc

e2Q2

8(2⇡)4
|m2

A|

Z 1

0
d⇠

⇥
⇠2 + (1� ⇠)2

⇤
f(!(1 + ⇠)) [1� f(!⇠)] . (24)

Note that the condition (22) is now trivial 0 < x < 1. Also, since e ⌧ g, !pl ⌧ m implying that

mA ⇡ mA in this approximation. We also approximate 1� f(!⇠) ⇡ 1� (e+ 1)�1 = 0.73 since the

argument of f is typically on the order of unity, for otherwise the distribution f(!(1 + ⇠)) of the

incident quark is exponentially suppressed. Thus we derive

!
d�D

d3k
= 0.73 · 2Nc

e2Q2

8(2⇡)4
|m2

A|


ln(1 + e��!)

�!
+

2Li2(�e��!)

(�!)2
�

4Li3(�e��!)

(�!)3

�
. (25)

The low and high energy regions of the spectrum read

!
d�D

d3k
= 0.73 · 2Nc

e2Q2

8(2⇡)4
|m2

A|

8
<

:

3⇣(3)
(�!)3 , ! ⌧ T

1
�!e

��! , ! � T .
(26)

Taking into account that m2
A is proportional to !, we find that at ! ⌧ T , the photon of spectrum

scales as 1/!2. Thus the total photon rate �D is dominated by soft photons ! ⌧ T that produce

the large logarithm ln(T/m).

B. Annihilation channel

The scattering matrix element for photon radiation in the annihilation channel q(p) + q̄(p1) !

�(k) is given by SA = (2⇡)4�(4)(p+ p1 � k)iMA where

iMA = �ieQ
v̄p1s1/✏

⇤
k�ups

p
8""1!V 3

. (27)

The corresponding radiation probability can be computed as

dwA = Nc
1

4

X

�ss0

|SA|
2f(")f("1)

V d3p1
(2⇡)3

V d3k

(2⇡)3
V d3p

(2⇡)3
(28)

where Nc accounts for di↵erent colors and 1/4 stems from the incident quark and antiquark spin

average. The rate of photon production per unit volume reads

d�A =
dwA

V T
= Nc

�(! � "1 � ")

32(2⇡)5""1!

X

�ss1

|iMA|
2f(")f("1)d

3kd3p . (29)

7

One can perform the integration of x explicitly in the limit m ⌧ |mA|. It is convenient to

introduce a new variable ⇠ = 1/x� 1 in place of x and rewrite (20) as
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d�D

d3k
= 2Nc

e2Q2

8(2⇡)4

Z 1
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d⇠

�
�m2
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⇥
⇠2 + (1� ⇠)2

⇤
� 2m2

 
f(!(1 + ⇠)) [1� f(!⇠)]

⇥✓
�
�m2

A⇠(1 + ⇠)�m2
�
, (23)

where only the photon polarization that gives m2
A < 0 contributes. Neglecting m one obtains
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|m2

A|

Z 1

0
d⇠

⇥
⇠2 + (1� ⇠)2

⇤
f(!(1 + ⇠)) [1� f(!⇠)] . (24)

Note that the condition (22) is now trivial 0 < x < 1. Also, since e ⌧ g, !pl ⌧ m implying that

mA ⇡ mA in this approximation. We also approximate 1� f(!⇠) ⇡ 1� (e+ 1)�1 = 0.73 since the

argument of f is typically on the order of unity, for otherwise the distribution f(!(1 + ⇠)) of the

incident quark is exponentially suppressed. Thus we derive

!
d�D
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= 0.73 · 2Nc

e2Q2

8(2⇡)4
|m2
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
ln(1 + e��!)
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+
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�
. (25)

The low and high energy regions of the spectrum read
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= 0.73 · 2Nc

e2Q2
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|m2
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<
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(�!)3 , ! ⌧ T
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��! , ! � T .
(26)

Taking into account that m2
A is proportional to !, we find that at ! ⌧ T , the photon of spectrum

scales as 1/!2. Thus the total photon rate �D is dominated by soft photons ! ⌧ T that produce

the large logarithm ln(T/m).

B. Annihilation channel

The scattering matrix element for photon radiation in the annihilation channel q(p) + q̄(p1) !

�(k) is given by SA = (2⇡)4�(4)(p+ p1 � k)iMA where

iMA = �ieQ
v̄p1s1/✏

⇤
k�ups

p
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. (27)

The corresponding radiation probability can be computed as

dwA = Nc
1

4
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V d3p1
(2⇡)3

V d3k

(2⇡)3
V d3p

(2⇡)3
(28)

where Nc accounts for di↵erent colors and 1/4 stems from the incident quark and antiquark spin

average. The rate of photon production per unit volume reads

d�A =
dwA

V T
= Nc

�(! � "1 � ")
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⇡ 0.73 · 2Nc
e2Q2

8(2⇡)4
|m2
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
ln(1 + e��!)
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+

2Li2(�e��!)
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(�!)3

�
.
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Taking into account that m2
A is proportional to !, we find that at ! ⌧ T , the photon of spectrum

scales as 1/!2. Thus the total photon rate �D is dominated by soft photons ! ⌧ T that produce

the large logarithm ln(T/m).

B. Annihilation channel

The scattering matrix element for photon radiation in the annihilation channel q(p) + q̄(p1) !

�(k) is given by SA = (2⇡)4�(4)(p+ p1 � k)iMA where

iMA = �ieQ
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The corresponding radiation probability can be computed as
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1
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(2⇡)3

V d3k

(2⇡)3
V d3p
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where Nc accounts for di↵erent colors and 1/4 stems from the incident quark and antiquark spin

average. The rate of photon production per unit volume reads

d�A =
dwA

V T
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Asymptotically:

Since |mA|2~ω, the total rate ΓD is dominated by soft photons yielding log(T/m)

HIGH-T LIMIT

0  x  1
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8

Summation over the transverse photon polarizations using (15) yields

X

ss1

|MA|
2 = 4


""1 +m2

�
(k · p)(k · p1)

k2

�
. (30)

Employing the high energy limit (17) and denoting by y = "/! the energy fraction that the incident

quark contributed to the photon energy and `? = yk? � p? one derives

X

ss1

|MA|
2 =

2

y(1� y)

⇥
`2?
�
y2 + (1� y)2

�
+m2

⇤
, (31)

and

�(! � "1 � ") ⇡ 2y(1� y)!�
�
`2? �m2

Ay(1� y) +m2
�
. (32)

These formulas can also be obtained from the results of the previous subsection using the crossing-

symmetry. Substituting (31) and (32) into (29) and integrating over `? instead of p? one finds

!
d�A

d3k
= Nc

e2Q2⇡

8(2⇡)5

Z 1

0
dyf(y!)f((1� y)!)

X
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⇥
m2

A(2y
2
� 2y + 1) + 2m2

⇤
✓(�{�) , (33)

where it is denoted

{� = �m2
Ay(1� y) +m2 . (34)

In the annihilation channel m2
A must be positive in order that {� be negative. Additionally, the

energy fraction y is restricted to the interval

1

2

 
1�

s

1�
4m2

|m2
A|

!
< y <

1

2

 
1 +

s

1�
4m2

|m2
A|

!
. (35)

Clearly, the radiation is possible only if |mA| > 2m.

In the limit |mA| � m, (33) simplifies

!
d�A

d3k
= Nc

e2Q2

16(2⇡)4
|m2

A|

Z 1

0
dyf(y!)f((1� y)!)(2y2 � 2y + 1) , (36)

where only the photon polarization that gives m2
A > 0 contributes. The integral can be taken

exactly:
Z 1

0
dyf(y!)f((1� y)!)(2y2 � 2y + 1)

=
1

e�! � 1


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(�!)3
+
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+
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2

3

�
. (37)

At low and high photon energy the spectrum reads
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d3k
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e2Q2

16(2⇡)4
|m2
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8
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1
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2
3e

��! , ! � T .
(38)
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Clearly, the radiation is possible only if |mA| > 2m.
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X

ss1

|MA|
2 =

2

y(1� y)

⇥
`2?
�
y2 + (1� y)2

�
+m2

⇤
, (31)

and

�(! � "1 � ") ⇡ 2y(1� y)!�
�
`2? �m2

Ay(1� y) +m2
�
. (32)

These formulas can also be obtained from the results of the previous subsection using the crossing-

symmetry. Substituting (31) and (32) into (29) and integrating over `? instead of p? one finds

!
d�A

d3k
= Nc

e2Q2⇡

8(2⇡)5

Z 1

0
dyf(y!)f((1� y)!)

X

�

⇥
m2

A(2y
2
� 2y + 1) + 2m2

⇤
✓(�{�) , (33)

where it is denoted

{� = �m2
Ay(1� y) +m2 . (34)

In the annihilation channel m2
A must be positive in order that {� be negative. Additionally, the

energy fraction y is restricted to the interval

1

2

 
1�

s

1�
4m2

|m2
A|

!
< y <

1

2

 
1 +

s

1�
4m2

|m2
A|

!
. (35)
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At low and high photon energy the spectrum reads
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The allowed values of y:

In the limit m≪|mA|
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Employing the high energy limit (17) and denoting by y = "/! the energy fraction that the incident
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Clearly, the radiation is possible only if |mA| > 2m.

In the limit |mA| � m, (33) simplifies

!
d�A

d3k
= Nc

e2Q2

16(2⇡)4
|m2

A|

Z 1

0
dyf(y!)f((1� y)!)(2y2 � 2y + 1) , (36)

where only the photon polarization that gives m2
A > 0 contributes. The integral can be taken

exactly:
Z 1

0
dyf(y!)f((1� y)!)(2y2 � 2y + 1)

=
1

e�! � 1


�
8Li3(�e�!) + 6⇣(3)

(�!)3
+

4Li2(�e�!)� ⇡2/3

(�!)2
+

2 ln(1 + e�!)� ln 4

�!
�

2

3

�
. (37)

At low and high photon energy the spectrum reads
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Employing the high energy limit (17) and denoting by y = "/! the energy fraction that the incident
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These formulas can also be obtained from the results of the previous subsection using the crossing-
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Clearly, the radiation is possible only if |mA| > 2m.

In the limit |mA| � m, (33) simplifies
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At low and high photon energy the spectrum reads
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Clearly, the radiation is possible only if |mA| > 2m.
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where only the photon polarization that gives m2
A > 0 contributes. The integral can be taken

exactly:
Z 1

0
dyf(y!)f((1� y)!)(2y2 � 2y + 1)

=
1

e�! � 1


�
8Li3(�e�!) + 6⇣(3)

(�!)3
+

4Li2(�e�!)� ⇡2/3

(�!)2
+

2 ln(1 + e�!)� ln 4

�!
�

2

3

�
. (37)

At low and high photon energy the spectrum reads

!
d�A

d3k
= Nc

e2Q2

16(2⇡)4
|m2

A|

8
<

:

1
6 , ! ⌧ T

2
3e

��! , ! � T .
(38)

y = p0/k0 = "/!
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FIG. 3. Ideal QGP and hadronic photon rate near the cross-
over region.

validity of perturbative QCD calculation of prompt pho-
tons, additional measurements will also help constrain
uncertainties due to the photon fragmentation function,
which are significant in the soft domains of perturbative
QCD calculation of prompt photons [50]. Without direct
measurements, those uncertainties will likely persist.

B. Thermal photons

The “thermal photons” are those photons result-
ing from the interaction of thermalized medium con-
stituents1. The computation of photon production rates
may be done using thermal field theory techniques, or
using relativistic kinetic theory [51]. Both approaches
have contributed to the compendium of rates used in this
work.

In the partonic sector, photon-production processes
calculated at leading order in the strong coupling con-
stant, gs, have been available for almost 15 years [52].
Those are used here2. At high energies, the charged
particle multiplicity is dominated by mesons. In the
hadronic sector at temperatures comparable to, and
lower than, the crossover temperature, photons originat-
ing from thermal reactions of mesonic origins were calcu-
lated in Ref. [26]. That same work also includes the pho-
tons obtained from taking the ⇢-meson self-energy to zero
invariant mass. This procedure accounts for the baryonic
contributions, be it radiative decays or reactions of the
type ⇡N ! ⇡N�, and NN ! NN�, where N represents
a nucleon. The net rate parametrized in Ref. [26] also

1
The thermalization approximation will be relaxed later.

2
Some recent work has extended this seminal result by going up

next-to-leading order [53]. For values of the strong coupling rel-

evant to the phenomenology considered in the current work, the

net photon rate at NLO is a modest 20% larger than that at LO.

avoids possible double-counting issues between mesonic
and baryonic contributions. Finally, this work includes
also recent estimates of ⇡⇡ bremsstrahlung contributions
[27], and of the reactions ⇡⇢ ! !�, ⇡! ! ⇢�, and
⇡! ! ⇢⇡ [28], absent from Ref. [26]. It is instructive
to compare rates, prior to integrating them with a dy-
namical four-volume evolution. This is done in Fig. 3.
The figure shows the LO partonic rates of Ref. [52] (solid
lines) compared with the hadronic rates of Refs. [26–28]
(dashed lines) for a range of temperatures in the cross-
over region.

C. Non-cocktail hadronic decay photons

As the strongly-interacting fluid hadronizes, it trans-
forms into hadrons which will interact. When those in-
teractions cease, the momentum distributions are frozen
and the particles free-stream out to the experimental de-
tectors. The longer-lived hadrons will contribute signif-
icantly to the photon signal and therefore have to be
included. Collectively, they are dubbed “the cocktail”
and are (for ALICE) ⇡0, ⌘, ⇢,!, ⌘0,�; the relevant photon-
producing decays are subtracted from the measured in-
clusive signal [54], to expose a combination of thermal
photons and prompt photons. There are however other,
shorter-lived, states which decay with a photonic com-
ponent in the final states [55]. This work includes all
of the ones with a mass M < 1.7 GeV. The di↵erential
cross section of the decay photons can then be calculated,
knowing the relevant branching ratio. After including all
of these, together with the decays considered in Ref. [56],
the most important channels were found to be ⌃ ! ⇤�,
f1(1285) ! ⇢0�, and K⇤(982) ! K�. All contributions
are however included, for completeness.

IV. CORRECTING THE PHOTON EMISSION
RATES FOR VISCOSITY

As mentioned earlier, it is an established fact that the
bulk dynamics of strongly interacting matter is sensitive
to the value of shear and bulk viscosities, two of the trans-
port coe�cients of QCD. Switching to a corpuscular de-
scription, and considering separately the reactions that,
together, define the fluid enables a channel-by-channel
viscous correction of the photon emission rates. The pho-
ton production rate, R� , admits a kinetic theory formu-
lation. For 2 ! 2 scattering (1 + 2 ! 3 + �) it is [51]

!
d3R�

d3k
=

1

2(2⇡)3

Z
d3p1

2P 0
1 (2⇡)

3

d3p2
2P 0

2 (2⇡)
3

d3p3
2P 0

3 (2⇡)
3

⇥(2⇡)4�4(P1 + P2 � P3 �K)|M|2fB/F (P1)fB/F (P2)

⇥
�
1 + �B/F fB/F (P3)

�
, (9)

where |M|2 is the squared matrix element corresponding
to the 2 ! 2 scattering, fB/F is the particle momentum
distribution for bosons (�B = 1) or fermions (�F = �1),

Paquet at al (2016)
T=400 MeV

1 
G

eV

3 
G

eV

The contributions are comparable. Worth doing a more accurate estimate.
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CONCLUSION 2

At high temperature QGP emits photons via the chiral 
Cherenkov radiation (without any magnetic field).

This is a missing contribution at low pT


