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Introduction: parton model

u Incoherent collection of partons; partons are “frozen” in infinite momentum frame

u Model (+ QCD factorization) describes many aspects of high energy experiments
through universal parton distributions

u Only diagonal components of density matrix
in number basis representation
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Introduction: paradox of parton model

u Proton is a quantum object in a pure state; it has zero entropy

u Parton model: in high energy experiments, proton behaves
like an incoherent ensemble of partons;

as such it carries non-vanishing entropy

D. Kharzeev and E. Levin, 1702.03489
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Introduction: possible resolution

u Entanglement of observed partons with unobserved proton degrees of freedom leads to
lack of coherence and large entropy of partonic system

u That is ρpart. mod. = Trunobs [|P 〉〈P |]; with ρpart. mod. being diagonal in the number of
partons representation

u This natural proposal eliminates tension between pure nature of proton and
incoherence nature of parton model

D. Kharzeev and E. Levin, 1702.03489
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Introduction: application

u In DIS photon probes only a part of proton wave function
u Associated entanglement entropy SE = ln xG
u Entropy of final hadrons Sh ≥ SE
u Similar in p-p collisions
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Introduction: alternative

u A set of measurements described by partin model is not complete

u Most measurements in DIS are related to 〈N〉 = Tr
[ ∫

d2k
(2π)2 a

†(k)a(k) ρ̂PM

]
u Extending this to TMD’s: 〈a†(k1)a(k1) a†(k2)a(k2) . . . 〉

u All of these are diagonal in number operator basis; no information about off diagonal
elements

u { infinite number of density matrices that are equivalent for the limited purpose of
describing results of measurements

arXiv:2001.01726
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Introduction: alternative

u Lack of knowledge can be characterized by an entropy: “the entropy of ignorance”

u Consider an incomplete defining set of observables {Oi}

u A density matrix reproducing this measurements ρ̂(αj) with αj parametrizing
measurements not covered by {Oi}

u Associated entropy S(α) = −Tr
[
ρ̂(α) ln ρ̂(α)

]
u Entropy of ignorance is the maximum of S(α) with respect to variation of α:
SI = maxαS(α)

u In PM: the set of defining operators are products of particle density operators and
thus only diagonal elements of the density matrix are determined by {Oi}

u In PM: αj parametrize off-diagonal elements; it can be rigorously shown that
parameters defining the entropy of ignorance corresponds to diagonal ρ̂

arXiv:2001.01726 7



Entropy of entanglement and entropy of ignorance

B A

u ρA = TrBρ

u ρPM – two alternatives: either ρA or obtained from ρA by
dropping off-diagonal elements

u Computable in CGC

u Before plunging into technicalities, let’s consider a trivial
example
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Example: two fermion model I

u Two fermions, A and B in pure state

|φAB〉 =
√

2
2 |0A〉 ⊗ |0B〉+ 1

2 |1A〉 ⊗ (|0B〉+ |1B〉)

u Reduced density matrix for subsystem A and B are

ρA = 1
2

(
1

√
2

2√
2

2 1

)
ρB = 1

4

(
3 1
1 1

)

Entanglement entropies for A and its complement are identical

SE(ρA) = SE(ρB) = 3
2 ln 2 + 1√

2
acoth

√
2 ≈ 0.416496
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Example: two fermion model II

u Ignorance entropy depends on set of defining operators {Oi}
u First: {Oi} as all operators diagonal in particle number basis. To calculate SI :

discard off-diagonal matrix elements in number basis ρAB = diag {1/2, 1/4, 0, 1/4}

SI(ρAB) = −
∑
i

pi ln pi = 3
2 ln 2 ≈ 1.03972

u Entropy of ignorance for reduced density matrix ρA: measurable quantities are
operators diagonal in Fock space of fermion A. Drop off-diagonal matrix elements of
ρA: ρIA = diag {1/2, 1/2}

SI(ρA) = ln 2 ≈ 0.693147

u Similarly, ρIB = diag {3/4, 1/4}, and corresponding entropy of ignorance is

SI(ρB) = 2 ln 2− 3
4 ln 3 ≈ 0.56233
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Example: two fermion model III

u Entanglement: SE(ρA) = SE(ρB)

u Ignorance: SI(ρA) , SI(ρB).

u Entanglement: SE(ρAB) = 0

u Ignorance: SI(ρAB) , 0
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CGC wave function

u Wave function of slowly evolving valence charges and faster soft gluon degrees of
freedom has the form

|ψ〉 = |s〉 ⊗ |v〉

|v〉 = the state vector characterizing the valence dof;
|s〉 = the vacuum of the soft fields

u |v〉 is approximated by the MV model

〈ρ|v〉〈v|ρ〉 = N e
−
∫
k

1
2µ2 ρa(k)ρ∗a(k)
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Soft fields

u Leading perturbative order: the CGC soft vacuum

|s〉 = C|0〉; C = exp
{

2itr
∫
k

bi(k)φai (k)
}

; φi(k) ≡ a+
i (k) + ai(−k)

u Background field bia is determined by valence color charge density ρ via:

bia(k) = gρa(k) iki
k2 + cia(k)

u Correction cia(k) is at least O(ρ2)
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Reduced density matrix

u Consider hadron density matrix:

ρ̂ = |v〉 ⊗ |s〉〈s| ⊗ 〈v|

u Integrate out the valence dof – reduced density matrix

ρ̂r = Trρρ̂ ≡
∫
Dρ 〈ρ|ρ̂|ρ〉 =

∫
Dρ 〈ρ|v〉 |s〉〈s| 〈v|ρ〉

u A meaningful proxy? Common element with the real life PM is the natural bi-partitioning of
the dof in the underlying wave function and integrating over the “environment”

u Number basis representationi (R =
(

1 + q2

2g2µ2

)−1
)

〈nc(q),mc(−q)|ρ̂r(q)|αc(q), βc(−q)〉 = (1−R) (n+ β)!√
n!m!α!β!

(
R

2

)n+β
δ(n+β),(m+α)

u Includes off-diagonal elements

〈nc(q), nc(−q)|ρ̂r(q)|0, 0〉 = (1−R)
(
R

2

)n
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Entanglement entropy

u Entanglement entropy = Von Neumann entropy of reduced matrix SE = −Tr ρ̂r ln ρ̂r

SE = 1
2(N2

c − 1)S⊥
∫

d2q

(2π)2

[
ln
(
g2µ2

q2

)
+

√
1 + 4g

2µ2

q2 ln
(

1 + q2

2g2µ2 + q2

2g2µ2

√
1 + 4g

2µ2

q2

)]

u In general, for arbitrary q, it is not obvious that it has the form
(n+ 1) ln(n+ 1)− n lnn

u Consider large momentum

SE(q) ' −(N2
c − 1)S⊥

g2µ2

q2 ln
(
g2µ2

q2

)

or, identifying n = g2µ2

q2 , one obtains −(N2
c − 1)S⊥

∫
q
n lnn
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Ignorance entropy

u Take reduced density matrix; drop off-diag. elements; compute Von Neumann entropy

SI = −1
2(N2

c − 1)S⊥
∫

d2q

(2π)2

∑
m,n

[
(1−R) (m+ n)!

m!n!

(
R

2

)m+n
]

ln
[

(1−R) (m+ n)!
m!n!

(
R

2

)m+n
]

u No analytical result;
large q behaviour is known;
small q cannot be computed analytically

u Numerical comparison of SI to SE

u Why large q behaviour is the same?!

R =

(
1 + q2

2g2µ2

)−1

2 4 6 8 10
q/gµ
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Renyi SIR(q)/SR(q)
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UV behaviour

For large q

SI(q) '
(N2

c − 1)g2µ2S⊥
q2

[
ln
(
e
q2

g2µ2

)
+ g2µ2

q2 ln e2

]
vs

SE(q) ' (N2
c − 1)g2µ2S⊥

q2

[
ln
(
e
q2

g2µ2

)
− g2µ2

q2 ln
(
e
q4

g4µ4

)]

Leading contribution originates from property of “vacuum state” n = m = α = β = 0.
Rather trivial effect: it does not probe the distribution of partons, but rather the
probability that no partons are present.

Subleading contribution probes parton distribution and at this level is different for both
entropies.
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Fixed color charge configuration

u Study case: density matrix of soft modes at fixed configuration of valence charges.

u Entanglement entropy is trivial: the soft modes are in a pure state at fixed ρa(q)

ρ̂ = C|0〉〈0|C†
where C is unitary.

u Renyi entropy of ignorance

SI = − ln Trρ̂2 = 1
2S⊥

∫
d2q

(2π)2

∑
a

[
4g

2

q2
∆2

(2π)2 |ρa(q)|2 − ln I2
0

(
2g2

q2
∆2

(2π)2 |ρa(q)|2
)]

u Typical configuration ∆2

(2π)2 |ρa(q)|2 ∼ µ2

Styp
I = − ln Trρ̂2 = 1

2(N2
c − 1)S⊥

∫
d2q

(2π)2

[
4g

2µ2

q2 − ln I2
0

(
2g2µ2

q2

)]

At hight momentum the integrand behaves as 4 g
2µ2

q2 − 2
(
g2µ2

q2

)2
; compare this with

the ignorance entropy 4 g
2µ2

q2 − 6
(
g2µ2

q2

)2
of the reduced density matrix.
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Conclusions

u Parton model assumes incoherent collection of partons with the diagonal density
matrix in the number representation.

u Parton model is successful in describing a large number of observables.

u Does it mean that the actual physical partonic system is described by a diagonal
density matrix?

u Is there a compelling argument? Instead: introduce a new form of entropy – ignorance
entropy – which besides the reduction of the density matrix reflects our inability to
perform a complete set of measurements. SI ≥ SE

u In this talk, I considered a computable model based on CGC.
It manifests the difference between entanglement and ignorance entropies.
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Fixed color charge configuration

u At hight momentum the integrand behaves as
4 g

2µ2

q2 − 2
(
g2µ2

q2

)2

u Compare this to ignorance entropy
4 g

2µ2

q2 − 6
(
g2µ2

q2

)2

of the reduced density matrix

u For a typical configuration of ρa(q), the ignorance entropy is close to the ignorance
entropy of reduced density matrix.

u On the other hand SE crucially depends on reducing the density matrix – it vanishes
for fixed configuration of ρa(q), but is nonzero for ρ̂r.
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UV behaviour
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u Small difference in UV is solely due to small occupation numbers; at intermediate and
low momenta, where the occupation numbers are of order unity, difference becomes
significant.

u Expectation: similar feature in real parton model of QCD?!
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Reduced density matrix

Finally, reduced density:

ρ̂r = N
∫
Dρ e

−
∫
k

1
2µ2 ρa(k)ρ∗a(k)

C(ρb, φib)|0〉〈0|C†(ρc, φjc)
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Coherent operator on soft gluon vacuum:

C|0〉 = e
i
∫
k
bic(k)[aic

+(k)+aic(−k)]
|0〉 = e

i
∫
k
bic(k)aic

+(k)
e
− 1

2

∫
k

g2

k2 |ρc(k)|2
|0〉

ρ̂r = N
∫ ∏

k

∏
a

dρa(k) e
− ∆2

(2π)2

(
1

2µ2 + g2

k2

)
ρa(k)ρ∗a(k)

e
ibia(k)a†

ia
(k) ∆2

(2π)2 |0〉〈0|e−ib
∗i
a (k)aia(k) ∆2

(2π)2

Thus density matrix element is

〈nc(q),mc(−q)|ρ̂r(q)|αc(q), βc(−q)〉 = (1−R) (n+ β)!√
n!m!α!β!

(
R

2

)n+β
δ(n+β),(m+α)

where

R =
(

1 + q2

2g2µ2

)−1
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Reduced density matrix

〈nc(q),mc(−q)|ρ̂r(q)|αc(q), βc(−q)〉 = (1−R) (n+ β)!√
n!m!α!β!

(
R

2

)n+β
δ(n+β),(m+α)

u Clearly includes off-diagonal elements

u As an example,

〈nc(q), nc(−q)|ρ̂r(q)|0, 0〉 = (1−R)
(
R

2

)n
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Entanglement entropy

SE = 1
2(N2

c − 1)S⊥
∫

d2q

(2π)2

[
ln
(
g2µ2

q2

)
+

√
1 + 4g

2µ2

q2 ln
(

1 + q2

2g2µ2 + q2

2g2µ2

√
1 + 4g

2µ2

q2

)]

u Proportional to S⊥g2µ2 ∼ 1
αs
S⊥Q

2
s

u In general, for arbitrary q, it is not obvious that it has the form
(n+ 1) ln(n+ 1)− n lnn = ln(n+ 1) + n ln(1 + 1/n)

u Consider small momentum

≈ 2 ln
(
gµ

q
+ 1
)

+ 2gµ
q

ln
(

1 + q

gµ

)
or, identifying n = gµ

q , one obtains (N2
c − 1)S⊥

∫
q

[ln(n+ 1) + n ln(1 + 1/n)]
It makes sense, as n = 1/[exp(q/gµ)− 1] ≈ gµ

q
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Entanglement entropy

SE = 1
2(N2

c − 1)S⊥
∫

d2q

(2π)2

[
ln
(
g2µ2

q2

)
+

√
1 + 4g

2µ2

q2 ln
(

1 + q2

2g2µ2 + q2

2g2µ2

√
1 + 4g

2µ2

q2

)]

u In general, for arbitrary q, it is not obvious that it has the form
(n+ 1) ln(n+ 1)− n lnn

u Consider large momentum

SE(q) ' −(N2
c − 1)S⊥

g2µ2

q2 ln
(
g2µ2

q2

)

or, identifying n = g2µ2

q2 , one obtains −(N2
c − 1)S⊥

∫
q
n lnn
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