10th international conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (online)

Transport coefficient \hat{q} in 2+1 flavor QCD plasma and pure gluon plasma

AMIT KUMAR Wayne State University

Collaborators: Prof. Abhijit Majumder (WSU) Dr. Johannes Weber (MSU)

- \Box Phenomenology based extraction of transport coefficient \hat{q} in heavy-ion collisions
- \Box Formulating \hat{q} for hot QGP using Lattice gauge theory 1) Express \hat{q} as a series of local operators using dispersion relation
- 2) Computing operators on quenched SU(3) lattices 3) Computing operators on unquenched SU(3) lattices
- \Box Estimates of \hat{q} for pure gluon plasma and 2+1 flavor QGP

First systematic extraction of \hat{q} based on phenomenology

Leading parton going through medium

First systematic extraction of \hat{q} based on phenomenology

Leading parton going through medium

Amit Kumar (HardProbes 2020), June 4th, 2020

Lattice formulation of \hat{q}

Leading order (LO) process: A high energy quark propagating (along -ve z-dir) through plasma

Quark momentum: $q = (\mu^2/2q^-, q^-, 0) \sim (\lambda^2, 1, 0)q^-;$ where $\lambda < < 1$; $q^- = (q^0 - q^3)/\sqrt{2} \equiv$ hard scale Transverse gluon: $k = (k^+, k^-, k_\perp) \sim (\lambda^2, \lambda^2, \lambda)q^ \hat{q} = \sum_{k} k_{\perp}^{2} \frac{Disc \left[\mathscr{W}(k) \right]}{L^{0}}; \quad \mathscr{W}(k): \text{ Transition probability}$

$$\hat{q} = \frac{16\sqrt{2}\pi^{2}\alpha_{s}}{N_{c}} \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} d^{2}k_{\perp}e^{-i\frac{k_{\perp}^{2}}{2q^{-}}y^{-}+i\vec{k}_{\perp}} \\ \times \langle M | \operatorname{Tr}[F^{+\perp_{\mu}}(y^{-},y_{\perp})F^{+}_{\perp_{\mu}}(0)] | M \rangle \longleftarrow$$

Non-perturbative part

Amit Kumar (HardProbes 2020), June 4th, 2020

A. Majumder, PRC 87, 034905 (2013)

 $\overrightarrow{y}_{\perp}$ (Lattice QCD)

Constructing a more general expression as Q

*****Generalized object \hat{Q} : with q^- fixed and q^+ is variable

$$\hat{Q}(q^{+}) = \frac{16\sqrt{2}\pi\alpha_{s}}{N_{c}} \int \frac{d^{4}yd^{4}k}{(2\pi)^{4}} e^{iky}q^{-\frac{\langle M | \operatorname{Tr}[A]}{(2\pi)^{4}}}$$

► When
$$q^+ \sim 0 \ll q^-$$
:
Disc $\left[\hat{Q}(q^+)\right]\Big|_{q^+ \sim 0} = \hat{q}$

• When $q^+ = -q^-$: Perform d^4y and d^4k integration

$$\hat{Q}(q^{+} = -q^{-}) = \frac{8\sqrt{2}\pi\alpha_{s}}{N_{c}q^{-}} \langle M | \operatorname{Tr}[F^{+\perp_{\mu}}(0)\sum_{n=0}^{\infty} \left(\frac{i\sqrt{2}D_{z}}{q^{-}}\right)^{n} F^{+}_{\perp_{\mu}}(0)] | M \rangle$$

Amit Kumar (HardProbes 2020), June 4th, 2020

 $\frac{[F^{+\perp_{\mu}}(0)F^{+}_{\perp_{\mu}}(y^{-},y_{\perp})]|M\rangle}{(q+k)^{2}+i\epsilon}$

Amit Kumar (HardProbes 2020), June 4th, 2020

Contour C1:

 $I = \oint \frac{dq^+}{2\pi i} \frac{\hat{Q}(q^+)}{(q^+ + q^-)} = \hat{Q}(q^+ = -q^-)$

Amit Kumar (HardProbes 2020), June 4th, 2020

$$I = \oint \frac{dq^{+}}{2\pi i} \frac{\hat{Q}(q^{+})}{(q^{+} + q^{-})} = \hat{Q}(q^{+} = -q^{-})$$

 \implies Source of systematic error

\hat{q} as a series of local operators

$$\hat{q} = \frac{8\sqrt{2}\pi\alpha_s}{N_c(T_1 + T_2)} \langle M | \operatorname{Tr}[F^{+\perp_{\mu}}(0) \sum_{n=0}^{\infty} \left(\frac{i\sqrt{2}D_z}{q^{-1}}\right)^n F^{+}_{\perp_{\mu}}(0)] | M \rangle_{\text{(Thermal-Vacuum)}}$$

 $x^0 \rightarrow -$ **Rotating to Euclidean space:**

Non-zero operators:

LO operators at n=0 : $\operatorname{Tr} \left[F^{3i} F^{3i} - F^{4i} F^{3i} \right]$ LO operators with D_z^2 derivative at n= LO operators with D_7^4 derivative at n=

Amit Kumar (HardProbes 2020), June 4th, 2020

X. Ji, PRL 110, 262002 (2013) **Parton PDF: Operator** product expansion with D_z derivatives

$$x^{0} \rightarrow -ix^{4}; A^{0} \rightarrow iA^{4}$$

 $\implies F^{0i} \rightarrow iF^{4i}$

$$[F^{4i}] \implies E_i^2 + B_i^2$$

$$= 2: \quad \operatorname{Tr} \left[F^{3i} D_z^2 F^{3i} - F^{4i} D_z^2 F^{4i} \right]$$

$$=4: \quad \mathrm{Tr} \left[F^{3i} D_z^4 F^{3i} - F^{4i} D_z^4 F^{4i} \right]$$

where, D_z is covariant derivative along leading parton direction (z-dir)

Basic elements of lattice QCD

- Periodic in imaginary time direction

- Vacuum lattice: $n_{\tau}a \ge n_{s}a$

 $< O > = \frac{\int DU D\bar{\psi} D\psi O e^{-S_f - S_g}}{\int DU D\bar{\psi} D\psi e^{-S_f - S_g}} = \frac{\int DU det(\mathcal{D}[U] + m_f) O e^{-S_g}}{\int DU det(\mathcal{D}[U] + m_f) e^{-S_g}}$

- Full QCD action: Highly-improved Staggered quark (HISQ) action + Tree-level Symanzik improved gauge action $\mathcal{O}(a^4) + \mathcal{O}(g_0^2 a^2)$,
 - Strange quark mass: fixed to physical value

Light quark mass: fixed to $m_{u,d} = m_s/20 \longrightarrow m_\pi \approx 160 \text{MeV}$ (in continuum),

Configurations are generated using public version of MILC code

•Pure SU(3) gauge action: $\langle o \rangle = \frac{\int DU \, o \, e^{-S_g}}{\int DU \, e^{-S_g}}$, Wilson's gauge action $\mathcal{O}(a^2) + \mathcal{O}(g_0^2 a^2)$, bare coupling $\beta = 6/g_0^2$

Renormalization factors for FF correlators

Tadpole improvements for Covariant derivative terms: Minimize Discretization effects **Tadpole factor,** $u_0 = \langle \text{Average Plaquette} \rangle^{1/4} \equiv \text{(mean link)}$

Covariant derivative terms:

 $D_z^2 F_{3i}(z) = \frac{1}{a^2} \left| \frac{U_z(z) F_{3i}(z+a) U_z^{\dagger}(z) + U_z^{\dagger}(z-a) F_{3i}(z-a)}{u_z^2} \right|^{\frac{1}{2}}$

Amit Kumar (HardProbes 2020), June 4th, 2020

•For pure SU(3) gauge:

$$a_{L} = \frac{f}{\Lambda_{L}} \left(\frac{11}{16\pi^{2}g_{0}^{2}} \right)^{\frac{-51}{121}} exp\left(-\frac{8\pi^{2}}{11g} \right)^{\frac{-5$$

 $T_c = 265 \text{MeV}, \Lambda_L = 5.5 \text{MeV}$

Tune $f(g_0^2)$ such that T_c/Λ_L is independent of g_0^2

$$\frac{(z-a)U_z(z-a)}{(z-a)} - 2F_{3i}(z)$$

FF correlator in unquenched and quenched SU(3) lattices

$$n_{\tau} = 6, n_{s} = 4n_{\tau}$$

$$\frac{1}{T^{4}} \operatorname{Tr} [F^{3i}F^{3i} - F^{4i}F^{4i}]$$

$$\frac{1}{T^{4}(q^{-})^{2}} \operatorname{Tr} [F^{3i}D_{z}^{2}F^{3i} - F^{4i}D_{z}^{2}F^{4i}]$$

$$\frac{1}{T^{4}(q^{-})^{4}} \operatorname{Tr} [F^{3i}D_{z}^{4}F^{3i} - F^{4i}D_{z}^{4}F^{4i}]$$

$$\frac{1}{T^{4}(q^{-})^{4}} \operatorname{Tr} [F^{3i}D_{z}^{4}F^{3i} - F^{4i}D_{z}^{4}F^{4i}]$$

- LO FF correlator is dominant
- •FF correlator with D_z^2 derivative are suppressed by a factor of 10^3 compared LO operator
- •FF correlator with D_7^4 derivative are suppressed by a factor of 10^6 compared LO operator

Amit Kumar (HardProbes 2020), June 4th, 2020

$\stackrel{\wedge}{q}$ for 2+1 flavor QCD and pure gluon plasma

- At high temperature: $\hat{q} \propto T^3$
 - $\frac{q}{T^3} \sim 2.5$ -3.5 (2+1 flavor QCD plasma) \hat{q}
 - $\frac{q}{T^3} \sim 1.5$ -2.5 (pure gluon plasma)
- At low temperature:

 \hat{q}/T^3 becomes smaller and No signature of log-dependence as in HTL form

(HTL formula) $\equiv \hat{q} \propto T^3 \ln (E/T)$

The qualitative behavior is similar to entropy density

Comparison with extractions based on heavy-ions experimental data

Lattice extractions are consistent to JET and **JETSCAPE** collaboration extraction

Lattice extracted \hat{q} does not show a log-like behavior

$$\hat{q} \propto T^3 \ln\left(\frac{E}{T}\right)$$
 (HTL formula)

Amit Kumar (HardProbes 2020), June 4th, 2020

 \hat{q}/T^3

14

Summary and Future work

\Box First lattice calculation of \hat{q} on 2+1 flavor QCD plasma

- $\hat{q}/T^3 \sim 2.5-3.5$ (QCD plasma) and 1.5-2.5 (pure gluon plasma) Consistent with JET and JETSCAPE collaboration results within their
- uncertainty band
- Analytic continuation to deep Euclidean space and expressed as local operators
- \hat{q} does not show a log-dependence as in the HTL formula

☐ Future work

- Improve the statistics for $n_{\tau} = 8$ (Full QCD case) • Extend calculation to finer lattices $n_{\tau} = 10, 12$ and perform continuum
- extrapolation
- Include medium induced radiative corrections

First Bayesian and multi-stage extraction of \hat{q}

Using JETSCAPE framework

- Jet energy loss model: MATTER+LBT with switching virtuality Q0 ~ 1-2 GeV
- Based on fit to experimental data

(Taken from Ron Soltz's slides (HP 2018))

HISQ action

Replace the covariant derivative with the Naik term with smearing and reunitarization

$$\nabla_{\mu} [U] \chi(x) \to \nabla_{\mu} (x) [X] \chi(x) - \frac{a^2}{6} (1+\varepsilon) (\nabla_{\mu})^3 [W]$$

Amit Kumar (HardProbes 2020), June 4th, 2020

$$V_{\mu}(x) = \mathcal{F}^{f7} U_{\mu}(x),$$

 $\chi(x)$., where

$$W_{\mu}(x) = \mathcal{U}V_{\mu}(x) = \mathcal{U}\mathcal{F}^{f7}U_{\mu}(x),$$

$$X_{\mu}(x) = \mathcal{F}^{f7L}W_{\mu}(x) = \mathcal{F}^{HISQ}U_{\mu}(x)$$

Extract \hat{q} using analytic continuation of $\hat{Q}(q^+)$

Amit Kumar (HardProbes 2020), June 4th, 2020

 $q^2 \gg 0$ (Bremsstrahlung radiation);

nen
$$q^+ \in (-\infty, -\#I]$$

 $q^2 \ll 0$ (Space-like);

$$\frac{D_z}{D_{\mu}} \int^n F^+_{\perp_{\mu}}(\mathbf{0}) | M \rangle$$

FF correlator in unquenched SU(3) lattices

- LO FF correlator is dominant among all operators
- •FF correlates with D_7^4 derivative are suppressed by a factor of 10^6 compared LO operator

Amit Kumar (HardProbes 2020), June 4th, 2020

•FF correlator with D_z^2 derivative are suppressed by a factor of 10^3 compared LO operator

FF correlator in quenched SU(3) lattices

- LO FF correlator is dominant among all operators
- •FF correlates with D_z^4 derivative are suppressed by a factor of 10^6 compared LO operator

Amit Kumar (HardProbes 2020), June 4th, 2020

•FF correlator with D_r^2 derivative are suppressed by a factor of 10^3 compared LO operator

Operators in quenched SU(2) plasma

A. Majumder, PRC 87, 034905 (2013)

Amit Kumar (HardProbes 2020), June 4th, 2020

